
Statistical Khmer Name Romanization

Chenchen Ding1(B), Vichet Chea2, Masao Utiyama1, Eiichiro Sumita1,
Sethserey Sam2, and Sopheap Seng2

1 Advanced Translation Technology Laboratory, ASTREC,
National Institute of Information and Communications Technology, 3-5 Hikaridai,

Seikacho, Sorakugun, Kyoto 619-0289, Japan
{chenchen.ding,mutiyamam,eiichiro.sumita}@nict.go.jp

2 Research and Development Center, National Institute of Posts,
Telecommunication and ICT, #41 Russian Federation Blvd., Phnom Penh, Cambodia

{vichet.chea,sethserey.sam,sopheap.seng}@niptict.edu.kh

Abstract. We discuss and solve the task of Khmer name Romaniza-
tion. Although several standard Romanization systems exist for Khmer,
conventional transcription methods are applied prevalently in practice.
These are inconsistent and complicated in some cases, due to unsta-
ble phonemic, orthographic, and etymological principles. Consequently,
statistical approaches are required for the task. We collect and manually
align 7, 658 Khmer name Romanization instances. The alignment scheme
is designed to reach a precise, consistent, and monotonic correspondence
between the two different writing systems on grapheme level, through
which various machine learning approaches are facilitated. Experimen-
tal results demonstrate that standard approaches of conditional ran-
dom fields and support vector machine supervised by the manual align-
ment achieve a precision of .99 on grapheme level, which outperforms a
state-of-the-art recurrent neural network approach in a pure sequence-to-
sequence manner. The manually aligned data have been released under
a license of CC BY-NC-SA for the research community.

1 Introduction

Romanization is a linguistic task used to transform a non-Latin writing system
into Latin script—which is not a huge but an important and language-specific
task in natural language processing (NLP), especially in statistical machine
translation (SMT)—for those languages that do not use Latin script in orthogra-
phy. In academia, orthographic transliteration, phonemic transcription, or mixed
systems with certain trade-off have been developed for different languages in
various studies. In daily life, however, casual and conventional ways are more
commonly used in many languages, with varying inconsistency. Chinese (Man-
darin) is a typical example of a language with a stable Romanization system,
pinyin, which is used officially and in daily life. As to the case of Japanese,
the Hepburn Romanization is the most common system for daily use, including
passports, although certain variants in notation (e.g., around long vowels) are

c© Springer Nature Singapore Pte Ltd. 2018
K. Hasida and W. P. Pa (Eds.): PACLING 2017, CCIS 781, pp. 179–190, 2018.
https://doi.org/10.1007/978-981-10-8438-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8438-6_15&domain=pdf

180 C. Ding et al.

allowed. Korean is a case with considerable variants in Romanization, where
conventional or personalized spellings are prevalent.

In this study, we focus on the name Romanization of Khmer, a Southeast
Asian language with limited NLP studies. Similar to the languages mentioned
above, several Romanization systems have been designed for Khmer. However,
the case of Khmer is most similar to that of Korean, where Romanization with
conventional spellings is strongly preferable in practice. Compared with Korean,
Khmer has a more complicated phonology, less clear syllable structures, and
more etymologically oriented spellings, all of which make the task more prob-
lematic. Hence, statistical approaches based on real data are required to solve the
problem. In this paper, we provide satisfactory solutions for the Khmer name
Romanization task with detailed descriptions on data preparation, statistical
approaches, and discussions. We believe this is the first comprehensive work for
the specific task and we have released the data prepared and used in this study
under a license of CC BY-NC-SA.1

Specifically, we collect 7, 658 Romanization instances from real Khmer person
names. We then design an alignment scheme to manually annotate the Roman-
ization instances. The scheme is carefully designed to realize a (1) consistent, (2)
precise, and (3) monotonic alignment on grapheme level. In practice, the align-
ment is conducted manually at the very beginning, and automatic cross-checking
with manual modification is conducted repeatedly to clean up mistakes. Finally,
difficult and unusual instances are picked up and checked with further discus-
sions between annotators. The elaborated manual alignment on a dataset with
a considerable size thus provides a solid foundation for further investigation.

In the experiments, we first test rule-based approaches, which do not require
training data but use manual rules. The performance is mediocre. Ad-hoc rules
only provide insignificant gains. For statistical approaches, two standard machine
learning methods, conditional random fields (CRF) and support vector machine
(SVM), are tested. Because of the well-prepared grapheme-level alignment, the
Romanization task is simplified to be a sequence labeling task. The performance
is satisfactory: the precision on grapheme level reached .99 in cross-validation.
We also conduct a direct sequence-to-sequence experiment without using manual
alignment but applying a state-of-the-art bidirectional long short-term memory
(LSTM) based recurrent neural network (RNN) approach. The performance is
good, but does not match CRF’s and SVM’s results, which take advantage of
manual alignment. Therefore, We consider that it is the high quality of our
manually aligned data, rather than a sophisticated model, that contributes more
to the task.

The remainder of the paper is organized as follows: In Sect. 2, we intro-
duce the background of Khmer and related work on Romanization in NLP. In
Sect. 3, we prove descriptions of the alignment scheme we designed and applied
to annotate the data. Section 4 reports the evaluation and discussion based on
experiments, and Sect. 5 provides a conclusion.

1 http://niptict.edu.kh/khmer-name-romanization-with-alignment-on-grapheme-
level/.

http://niptict.edu.kh/khmer-name-romanization-with-alignment-on-grapheme-level/
http://niptict.edu.kh/khmer-name-romanization-with-alignment-on-grapheme-level/

Statistical Khmer Name Romanization 181

2 Background

Compared with the other Southeast Asian languages (e.g., Burmese and Thai),
the phonology of Khmer has two obvious features. First, Khmer is not a tonal
language, which is quite unusual in Southeast Asia. To compensate for the
absence of tones, Khmer has a large set of vowel phonemes with a size of
up to (at least) 31. Second, Khmer has abundant types of consonant clusters. A
two-consonant cluster in a syllable’s onset is common (three at the maximum).
Phonotactic constraints are loose in Khmer, where complex consonant clusters
can appear at the beginning of a syllable. A complete list may contain up to
around 80 types of consonant combinations.

The two phonemic features of Khmer are deeply related to Khmer’s abugida
writing system. In a general abugida system, each standalone consonant letter
can form a complete syllable with a hidden inherent vowel. The inherent vowel
can be changed to other vowels or suppressed using various diacritic marks.
The special feature of Khmer script is that there are two series (or registers)
of consonant letters, which have different inherent vowels. The two series are
usually mentioned as a-series (1st-series) and o-series (2nd-series). Furthermore,
diacritics represent two vowels when added to corresponding consonant series.2

which leads to a very complicated vowel system. Another feature of Khmer script
is that the stacked consonants are very common. One reason is the abundant
consonant clusters in phonology; another reason is the etymological spelling of
Sanskrit (Pali) derived words. The stacked consonants are not strictly based on
the syllable structure. Additionally (and more problematically), the virama, i.e.,
the diacritic used to suppress the inherent vowel, is absent in Khmer script,3

which makes the identification of onset and coda difficult.
Further introduction of Khmer’s phonology and script can be referred to in

the following resources available on-line: a sketchy one [3] and a detailed one [6].
We provide examples in Figs. 1 and 2 for illustration. In the first example, three
consonant letters, 2 , 4 , and 6 are stacked to a block to represent a consonant
cluster and a dependent vowel diacritic 7 is attached to the block to form an
unbreakable unit in writing. However, the first consonant 2 in this unit is the
coda of the first syllable (1 2) and the left 4 and 6 are the onset of the
second syllable (4 6 7 8). This is a typical instance of inconsistency between
phonemic analysis and writing systems. Furthermore, the first and third units,
both of which are composed of a single consonant letter (1 and 8 , respec-
tively), play different roles. The first unit stands for the onset and nucleus of the
first syllable with the inherent vowel of letter 1 . The third unit is the coda of
the second syllable, where the inherent vowel of letter 8 is suppressed, without
any explicit notation in writing. The second example has a more consistent and

2 Some diacritics always stand for one vowel. There are also diacritics serving as
“shifter” to switch the series of certain consonant letters, which affect the vowel
sound of other diacritics.

3 Actually, Khmer script has this diacritic, called viriam, but uses obsoletely.

182 C. Ding et al.

Fig. 1. Khmer word with the meaning of
fox. The bold lines on the Khmer word show
the boundary of the unbreakable unit in
writing and the thin lines distinguish the
components. The order of Khmer letters is
marked by numbers. The missing 3 and

5 are invisible stacking operators for gen-

erating the unit of 2 4 6 . The 7 is a
separated diacritic with two parts. IPA for
the whole word and each letter is shown.

Fig. 2. Khmer word with the mean-
ing of teacher, borrowed from San-
skrit ācārya. Notation in this figure
is identical to that in Fig. 1. The
missing 6 is the invisible stack-
ing operator for generating the unit
of 5 7 . The third unbreakable

unit 5 7 is completely silent in
pronouncing, but only written in
orthography due to the etymology.

Fig. 3. A Khmer name composed of two words. The left side is the raw string pair and
the right side is the grapheme-aligned pair. 4 is the space; 7 and 9 are stacking
operators. The “.” stands for inserted inherent vowels on the Khmer side (annotated
by a hedge) and for a silent placeholder on the Latin side.

clearer match between writing and pronouncing, in that the first and second
units (1 2 and 3 4 , respectively) exactly correspond to the two syllables.
The problem here is the third unit (5 6), which is totally silent, but appears
in writing only for the etymological reason. These examples illustrate the difficul-
ties in even a pure phonemic transcription for Khmer script, where orthographic
and etymological facts are involved. As for Romanization in practice, the task
further suffers variants in mapping from phoneme to grapheme, as noted by the
Latin alphabet.

In engineering practice, the Romanization task is a string-to-string transfor-
mation, which can be cast as a simplified translation task working on grapheme
level rather than on word (or phrase) level with no (or few) reordering opera-
tions. Hence, general SMT techniques can be facilitated once training data are
prepared. The phrase-based SMT plays a role of baseline in recent workshops
[1,2], whereas neural network techniques provide further gains in performance
[4,5]. Although neural network-based, pure string-to-string approaches prove
powerful on different transliteration tasks, there is still room for improvement,

Statistical Khmer Name Romanization 183

especially on tasks between different writing systems. For example, the Thai-
to-English task, which is similar to our task, has relatively poor performance
in NEWS 2015.4 The problem around diacritics in abugida is also stated in [7].
General techniques may offer acceptable solutions overall, but specialized inves-
tigation and processing are required for further improvement on tasks for specific
languages, or language pairs.

3 Data

3.1 Collection

We collect 7, 658 real Khmer names with corresponding Romanization in pairs.
Khmer names usually consist of two words, a family name coming first, followed
by a given name, separated by a space in writing. However, the family name is
not an obliged element, i.e., a person may have no family name but only a given
name. On the other hand, a given name may contain more than one word. As a
result, for a name containing two words, it is not always clear that it is a family-
given name pair or a two-word given name. We do not explicitly distinguish the
family name and given name in our data. The spaces in names are treated as an
ordinary character and kept constant in Romanization. That is, Romanization is
always word-by-word, without any merging or splitting operations. An example
of a two-word Khmer name with its Romanization is illustrated on the left side
of Fig. 3.

3.2 Overall Principles in Alignment

As mentioned, phonemic syllables and unbreakable writing units do not match
well in Khmer script. Consistent alignment principles are thus difficult to estab-
lish if the syllables or units are taken as atoms in processing. Furthermore,
there are numerous types of syllables and writing units that may contain up to
four phonemes, which are too complex for statistical model learning because
of sparseness. Based on these facts, we prefer a pure character-level alignment,
where standalone consonant letters, diacritics, and the invisible staking operator
are separated and treated equally as grapheme on the Khmer side.

A consequent problem is the inherent vowels, once we completely ignore
the syllable structure in a character-based alignment. We cannot judge whether
a standalone consonant stands for only one consonant or contains a further
inherent vowel, due to ambiguity in the writing system. We thus apply a scheme
to insert a mark to represent the inherent vowel for all the “bare” consonant
letters (i.e., consonant letters without any diacritics or stacking operators) to
establish a consistent alignment. This insertion is thus decisive based on the
surface spelling, and the ambiguity on the presence or absence of the inherent

4 The original names are western names in the Thai-to-English task, which may make
the grapheme correspondence more varied and inconsistent.

184 C. Ding et al.

vowel is converted to whether the inserted mark is silent.5 As a result, the
problem is treated as uniformly as the other silent characters.

The right side of Fig. 3 illustrates an alignment example. The consonant let-
ters here are 1 , 3 , 5 , 6 , 8 , and 10 , where 3 and 5 are bare consonant
letters,6 after which the inherent vowel is inserted (noted by a dot here and
indicated by a wedge without original index). Then a character-by-character
alignment can be established.7 According to the overall principles, Khmer con-
sonant letters are aligned to Latin consonant graphemes; diacritics, including
inserted inherent vowels, are aligned to Latin vowel graphemes; and any silent
part is aligned to a placeholder.8 Further alignment details caused by specific
use is described in the following subsection.

In Fig. 3 as well as in our practice, we use the same mark for the Khmer side
inserted inherent vowel and the silent placeholder on the Romanization side. This
introduces no confusion because the mark is decisively inserted on the Khmer
side and decisively deleted in the Romanization results.

3.3 Special Cases in Alignment

The alignment under our overall principles is almost monotonic and one-to-one.
However, there are two specific cases to be discussed: (1) multiple diacritics for
one consonant letter and (2) stacked consonants letters for a single phoneme.

The first case is mainly caused by the anusvara (adding nasal ending), visarga
(adding aspiration ending), and series shifters changing the a-/o-series of conso-
nant letters. Figure 4 illustrates the examples. When a consonant letter takes an
anusvara directly, it is not bare anymore, so the Latin letters for inherent vowel
and the nasal ending (commonly transcribed into M) are taken as one grapheme
aligned to the anusvara. The anusvara can, however, modify other diacritics to
add a nasal ending, where only the M endings are aligned to anusvara and the
vowel value is taken by the preceding diacritics. The first two instances in Fig. 4
show the difference in alignment on anusvara. The alignment around visarga,
which is commonly transcribed into S, is identical to that around anusvara. The
middle two instances in Fig. 4 show the alignment around the series shifter, which
is similar to the anusvara (visarga), but inserted between a consonant letter and
other diacritics. The shifter is actually modifying the preceding consonant letter,
so the value of the vowel will be afforded by other diacritics if there is any. The
shifter itself has no specific value unless it is the only diacritic of a consonant.
5 Generally, the diacritics in an abugida system are observed as vowel shifters to change

the inherent vowel. From the viewpoint of this study, the diacritics are actually
treated as vowel notes and the inherent vowel is treated as one with a zero-alternant
form, which the insertion processing makes explicit.

6
2 and 11 are diacritics for 1 and 10 , respectively, and 6 and 8 are followed

by staking operators. So these four consonant letters are not bare.
7 As the task is to transform Khmer script to Latin script, the graphemes are not

guaranteed to be single letters on the Romanization side, e.g., the 5 corresponds
to CH here.

8 The stacking operator is always aligned to a silent placeholder.

Statistical Khmer Name Romanization 185

Fig. 4. Alignment principles around anusvara (visarga), series shifters, and an align-
ment example for a Chinese-style name with both diacritics.

Fig. 5. Alignment examples of two western-style names, where the consonants Z and
F are non-native phonemes of Khmer. The original value (common transcription) of
consonant letters combined to represent the two sounds is placed upward.

The rightmost example in Fig. 4 is a real name taking both anusvara and the
shifter simultaneously, aligned according to our principles.

The second case is caused by certain non-native consonants in Khmer, mainly
appearing in loanwords, and here, appearing in westernized names. Figure 5 pro-
vides two real examples. It can be observed that Z is represented by stacked
Khmer letters for H and S, and F is represented by stacked Khmer letters for H
and V. The consonant letter of H is commonly stacked over another consonant
letter of an approximate pronunciation to represent a non-native consonant.
Therefore, the corresponding Latin consonant graphemes are aligned to the sec-
ond Khmer letters and the first Khmer letter H is aligned to a silent placeholder.
In Fig. 5 (on the right), the stacked consonants for F are further modified by two
diacritics, where the first is a series shifter.

As illustrated in this subsection, the combination of consonant letters and
various diacritics is complicated in Khmer script, and the grapheme-level align-
ment we designed can cover different cases consistently, to offer a monotonic
and one-to-one alignment. However, the Romanization of Khmer characters is
not totally position-free under our alignment scheme, and at least a window of
tri-gram on Khmer characters is required to provide enough information for a
correct Romanization.

4 Experiment

4.1 Questions and Approaches

The well-aligned data prepared in this study have already provided a solid foun-
dation of the Romanization task. Therefore, we investigate the following two

186 C. Ding et al.

questions through experiments: (1) to what extent can statistical approaches
help the task and (2) to what extent can our manual alignment help statistical
approaches.

For the first question, we first try a rule-based transcription to investigate the
performance. The rules used are edited manually, based on conventional spellings
in Romanization rather than academic standards. Then we try a state-of-the-art
neural network-based sequence-to-sequence approach trained on surface string
pairs in our data, without using the alignment. The neural network outperforms
the rule-based approach by a large margin. The results illustrate the necessity
of real data and statistical approaches in this task.

For the second question, we further try two standard and widely used machine
learning approaches, CRF and SVM, trained on the grapheme-level alignment.
Because the alignment has cleaned up two difficult problems in transformation,
i.e., source-side segmentation (actually, character-by-character) and source-to-
target alignment, the task is converted to a sequence labeling task, to which
these compact and efficient approaches are applicable. The results yielded by the
two approaches outperform the neural network’s results, demonstrating that the
manual alignment does provide useful information and boosts the performance
efficiently.

The details of the experiments are described in the following subsections.
Experimental results are evaluated in two ways: the accuracy on source-to-target
grapheme transcription (GRAPH) and the accuracy on target strings (LATIN).
GRAPH is based on grapheme-level alignment, where all Khmer letters, includ-
ing the inserted inherent vowel, are counted in the calculation.9 GRAPH cannot
be applied to the sequence-to-sequence experiments as the alignment is not an
explicit variable in the processing and final results. For LATIN, we simply apply
the BLEU score [11], the most common measure in SMT, on alphabet level,
where silent placeholders in Romanization are deleted before calculation.10

4.2 Rule-Based Transcription

Although the Romanization of Khmer is not consistent, there is preference for
each letter. Figures 6 and 7 show the most preferred transcription of Khmer
letters. A näıve mapping based on the listed transcriptions cannot reach a sat-
isfactory performance. The accuracy is .746 on GRAPH and .515 on LATIN. When
we focus more on some conventional spelling features, so as to double the con-
sonant letters after short vowels or to transform specific stacking consonants,
(e.g., the case in Fig. 5), we have a better result, a GRAPH of .909 and a LATIN of
.821. Further improvement is difficult. We try ad-hoc rules in an exhaustive way
and find the upper boundary of the rule-based mapping to be around .95 for

9 Spaces are not counted because they are always maintained constant. Stacking oper-
ators as well as other silent Khmer letters are counted.

10 Spaces are taken as one character in the BLEU calculation.

Statistical Khmer Name Romanization 187

GRAPH and .88 for LATIN. Although the performance is not perfect, we consider
it reasonable and acceptable in terms of simplicity.11

4.3 Sequence-to-Sequence Transliteration

In recent research, direct sequence-to-sequence approaches launched by neural
network techniques have been widely applied in various NLP tasks. We experi-
ment a state-of-the-art LSTM-based RNN approach with a bidirectional search
in decoding12 [9]. The approach performs well on different transliteration tasks.

The experiment is conducted using an eight-fold cross-validation on our data
without using manual alignment. The entire data are split into eight parts, with
each part taken as a test set and the left parts used for training. As separated
development data are needed for tuning the iteration times, one-thirtieth of the
training data is sampled. Other hyper-parameters are based according to the
original paper: embedding size is 500, hidden unit dimension is 500, and batch
size is 4. AdaDelta is used for optimization with a decay rate ρ of 0.95 and an ε
of 10−6.

The result of LSTM-based RNN reaches .953 in terms of LATIN. Compared
with the rule-based mapping result, a machine learning approach clearly per-
forms better on the task, even without applying any specific a priori knowledge.
The comparison of the two approaches provides a clear and solid answer to the
first question.

4.4 Alignment-Based Sequence Labeling

We test two standard machine learning approaches, CRF and SVM, by handling
the task in a sequence labeling manner. That is, the Latin graphemes (including
the silent placeholder) are tried as labels for each Khmer character.

We use the CRF++ toolkit13 [8,12] and the KyTea toolkit14 [10] for CRF
and SVM experiments, respectively. Both toolkits are open-sourced. Similar to
RNN experiments, CRF and SVM experiments are also cross-validated, where
the eight-, four-, and two-fold results are tested for comparison. As to the settings
of the two approaches, we basically use up to tri-gram on Khmer characters as
input features. As mentioned, this is the minimum size of a window to provide
adequate information under our alignment scheme. Specifically, the -charn and
the -charw options are set to three for KyTea. The features used for CRF++
are Cn+k

n (k ∈ [1, 2], n ∈ [−k, 0]) for character sequences and Cn (n ∈ [−2, 2]) for
single characters. As the training speed of KyTea is very fast under this setting,
we ultimately try an exhaustive leave-one-out experiment, in which each instance
is left for testing and all the rest instances are used for training. Table 1 lists the
evaluation on the whole dataset.
11 A Python implementation for the rule-based transcription with different layers of

rules is available at http://www2.nict.go.jp/astrec-att/member/mutiyama/software.
html.

12 An open-sourced tool is available at https://github.com/lemaoliu/Agtarbidir.
13 http://taku910.github.io/crfpp/.
14 http://www.phontron.com/kytea/.

http://www2.nict.go.jp/astrec-att/member/mutiyama/software.html
http://www2.nict.go.jp/astrec-att/member/mutiyama/software.html
https://github.com/lemaoliu/Agtarbidir
http://taku910.github.io/crfpp/
http://www.phontron.com/kytea/

188 C. Ding et al.

Fig. 6. Preferable transcription for Khmer consonant letters. A-series and o-series let-
ters are listed. The gray letters are rarely used and never appear in our data. The
final diacritics in the two series are the two series shifters, which change the consonant
letters in the other series to their own series.

Fig. 7. Preferable transcription for different Khmer vowel diacritics and letters. Dia-
critics with consonant series-dependent transcriptions are listed on the upper left, a-
series, and o-series respectively. Diacritics with identical transcriptions are listed at the
bottom. These diacritics may stand for different vowels for consonants from different
series, without being reflected in Romanization. In the upper right, standalone letters
for vowels are listed. Rare vowels not appearing in our data are marked in gray.

Table 1. Evaluation results (GRAPH/LATIN) of CRF and SVM in cross-validation.

2-fold 4-fold 8-fold leave-1-out

CRF .987/.974 .988/.976 .989/.977 —

SVM .988/.977 .989/.978 .990/.979 .990/.980

Statistical Khmer Name Romanization 189

The performance of the two approaches is nearly identical. The performance
on GRAPH is around .99 and on LATIN is around .98, which outperforms the RNN’s
.95. The results is satisfactory and reasonable. As to the answer to the second
question, we conclude that the Khmer Romanization task does not require fea-
tures in a long distance, which RNN can model well, but precise local alignment
provides useful and efficient information contributing to the performance.

As to engineering issues in practice, it takes hours to train an RNN model
on more than 6, 000 instances in eight-fold cross-validation, while to train the
SVM model in KyTea only takes seconds. Therefore, we consider RNN to be a
superfluous approach for the Khmer Romanization task. As Table 1 shows, two-,
four-, eight-fold, and leave-one-out results actually do not differ much, which
indicates that several thousand instances are sufficient for the model training.

5 Conclusion

In this paper, we focus on the task of Khmer name Romanization, a task not
huge, but with its own difficulties. By collecting and elaborately aligning more
than 7, 000 real instances, we provide a solid foundation for the task. Experi-
mental results demonstrate that a rule-based approach is not sufficient to solve
the Romanization task, while statistical machine learning approaches trained on
our manual alignment can achieve an accuracy of .99 on the grapheme level.
Therefore, we believe that the Khmer name Romanization task has actually
been solved, provided our data and standard machine learning techniques. As
our manually aligned dataset plays a key role in solving the task, we release it
under a license of CC BY-NC-SA for the research community.

References

1. Banchs, R.E., Zhang, M., Duan, X., Li, H., Kumaran, A.: Report of NEWS 2015
machine transliteration shared task. In: Proceedings of NEWS, pp. 10–23 (2015)

2. Costa-jussà, M.R.: Moses-based official baseline for NEWS 2016. In: Proceedings
of NEWS, pp. 88–90 (2016)

3. Ehrman, M.E., Sos, K., Kheang, L.H.: Contemporary Cambodian – grammati-
cal sketch (1974). https://www.livelingua.com/fsi/Fsi-ContemporaryCambodian-
GrammaticalSketch.pdf

4. Finch, A., Liu, L., Wang, X., Sumita, E.: Neural network transduction models in
transliteration generation. In: Proceedings of NEWS, pp. 61–66 (2015)

5. Finch, A., Liu, L., Wang, X., Sumita, E.: Target-bidirectional neural models for
machine transliteration. In: Proceedings of NEWS, pp. 78–82 (2016)

6. Huffman, F.E.: Cambodian system of writing and beginning reader with drills and
glossary (1970). http://www.pratyeka.org/csw/hlp-csw.pdf

7. Kunchukuttan, A., Bhattacharyya, P.: Data representation methods and use of
mined corpora for Indian language transliteration. In: Proceedings of NEWS, pp.
78–82 (2015)

8. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic
models for segmenting and labeling sequence data. In: Proceedings of ICML, pp.
282–289 (2001)

https://www.livelingua.com/fsi/Fsi-ContemporaryCambodian-GrammaticalSketch.pdf
https://www.livelingua.com/fsi/Fsi-ContemporaryCambodian-GrammaticalSketch.pdf
http://www.pratyeka.org/csw/hlp-csw.pdf

190 C. Ding et al.

9. Liu, L., Finch, A., Utiyama, M., Sumita, E.: Agreement on target-bidirectional
LSTMs for sequence-to-sequence learning. In: Proceedings of AAAI, pp. 2630–2637
(2016)

10. Neubig, G., Nakata, Y., Mori, S.: Pointwise prediction for robust, adaptable
Japanese morphological analysis. In: Proceedings of ACL-HLT, pp. 529–533 (2011)

11. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of ACL, pp. 311–318 (2002)

12. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings
of HLT-NAACL, pp. 134–141 (2003)

	Statistical Khmer Name Romanization
	1 Introduction
	2 Background
	3 Data
	3.1 Collection
	3.2 Overall Principles in Alignment
	3.3 Special Cases in Alignment

	4 Experiment
	4.1 Questions and Approaches
	4.2 Rule-Based Transcription
	4.3 Sequence-to-Sequence Transliteration
	4.4 Alignment-Based Sequence Labeling

	5 Conclusion
	References

