
AKKHARA: A Generalized Rewrite-based Input Method Editor
for Writing Systems with Medium Complexity

Chenchen Ding, Masao Utiyama, Eiichiro Sumita
Advanced Translation Technology Laboratory,

Advanced Speech Translation Research and Development Promotion Center,
National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan
{chenchen.ding, mutiyama, eiichiro.sumita}@nict.go.jp

Abstract

This paper describes the input method editor
AKKHARA, which has been developed to ac-
commodate writing systems comprising sev-
eral tens to hundreds of symbols. In particu-
lar, it is designed as a general solution for the
efficient input of various abugida writing sys-
tems used in South and Southeast Asia. As
an engineering realization, AKKHARA accepts
and applies a set of rewrite rules with priorities,
so that alternation, substitution, and normaliza-
tion of character strings are applied alongside
the keystrokes. Compared with key-character
editors, AKKHARA provides greater flexibility
for Romanization-based rule edition. Com-
pared with input methods developed for Chi-
nese and Japanese, AKKHARA is lightweight
and easy to maintain. A version of AKKHARA
for Microsoft Windows has been released1 that
supports Unicode characters with customiz-
able functions for rewrite rule edition.

1 Introduction

Various alphabet writing systems are used to record
a large number of languages around the world.
These alphabet systems use tens of distinguishable
symbols to transcribe phonemes.2 At the other ex-
treme, languages such as Chinese and Japanese
apply logogram systems totally or partially in their
orthographies, whereby thousands of symbols are
used to represent morphemes.

This work focuses on a group of syllabic systems
that lies somewhere between the abovementioned
extremes. They are referred to as having medium
complexity in this paper. Compared with logogram
systems, they are still phonetic-based, although a
certain redundancy in spelling may be retained to
distinguish morphemes; compared with an alphabet
system, they assign symbols based on syllables

1https://www2.nict.go.jp/astrec-att/
member/ding/my-akkhara.html

2Of course, the orthography is affected by many historical
factors.

rather than on phonemes, and may apply nonlinear
combination schemes to basic/diacritic characters.

Traditionally, these syllabic systems are input by
direct keystrokes treated as common alphabets. Be-
cause of the larger symbol set, the keyboard layout
is crowded and one or more alternation keys are
required. However, these systems are not as com-
plex as those used in Chinese or Japanese, where
language-dependent input methods are indispens-
able. The AKKHARA system developed in this work
provides a general solution for the input of writing
systems having medium complexity.
AKKHARA repeatedly applies rewrite operations

to convert keystrokes into specific character strings.
Therefore, compared with a keyboard layout edi-
tor, AKKHARA has more capacity and flexibility in
applying string operations than simply appending
new characters by keystrokes. This is especially
important for writing systems having certain redun-
dancies in their encoding systems, as some complex
combined glyphs can be realized in more than one
way. Thus, rewrite operations can normalize the
input to generate consistently encoded textual data.

The temporary input methods for Chinese and
Japanese are generally based on common Roman-
ization systems such as Pinyin and Rōmaji. How-
ever, in many languages that do not use the Latin al-
phabet, there is no consistent Romanization system.
In AKKHARA, the set of rewrite rules is organized
in an editable textual file with a structured format,
enabling users to customize the input method ac-
cording to their preferences.

In Sec. 2, the linguistic background of writing
systems is introduced. Related work and applica-
tions are reviewed in Sec. 3. Section 4 provides
an overview of AKKHARA and Sec. 5 describes the
rewrite rule edition. Section 6 provides a real ex-
ample of defining a minimal input method for the
Myanmar script with 133 rules. Section 7 sum-
marizes the conclusions to this study and presents
ideas for future work.

https://www2.nict.go.jp/astrec-att/member/ding/my-akkhara.html
https://www2.nict.go.jp/astrec-att/member/ding/my-akkhara.html

2 Linguistic Background

Table 1 lists the main types of writing systems used
in the world, with a comparison of the number
of symbols applied. Generally, an analytic pho-
netic writing system, e.g., a typical alphabet or
abjad system, usually contains around 30 (≈ 101.5)
symbols. This is because the average phonetic in-
ventory among natural languages contains 22± 3
consonants (Maddieson, 2013a) and five or six vow-
els (Maddieson, 2013b). At the other extreme, a
logogram system may contain thousands of sym-
bols for daily use. For example, the Table of Gen-
eral Standard Chinese Characters3 contains 8, 105
characters for Chinese, and the List of jōyō kanji4

contains 2,136 characters for Japanese.
Figure 1 compares the character distribution

across different writing systems. The parallel data
from the Asian Language Treebank (Riza et al.,
2016)5 was used. The differences between an al-
phabet system (English), a mixed syllabic and lo-
gogram system (Japanese), and four abugida sys-
tems (Myanmar, Khmer, Thai, and Lao) are pre-
sented. Clearly, the four abugida systems with
medium complexity share similar features, but dif-
fer from the alphabet/logogram systems. Generally,
in these medium complexity systems, there are
more commonly used symbols and a longer tail
of obscure characters than in a general alphabet
system. However, the complexity is still far from
that of a logogram system.

3 Related Work and Applications

Popular operating systems (OS) such as Microsoft
Windows (Win) and Macintosh provide keyboard
layouts for various writing systems. Several key-
board layout editors, such as Keyman,6 have been
developed for more sophisticated functions on lay-
out editions. These input methods/editors basically
focus on the key-character mapping, with exten-
sions to handle contextually dependent keystrokes.

For writing systems using Chinese characters,
the RIME7 input engine has customization func-
tions that allow users to design their own input

3http://www.gov.cn/gzdt/att/att/site1/
20130819/tygfhzb.pdf

4https://www.bunka.go.jp/kokugo_
nihongo/sisaku/joho/joho/kijun/naikaku/
pdf/joyokanjihyo_20101130.pdf

5https://www2.nict.go.jp/astrec-att/
member/mutiyama/ALT/

6https://keyman.com/
7https://github.com/rime

Type # Symbol Example
logogram > 103 Chinese character
phonogram

– syllabic 101.5 – 103 Japanese kana
– abugida 101.5 – 103 Devanagari script
– alphabet ≈ 101.5 Latin script
– abjad ≈ 101.5 Arabic script

Table 1: Types of writing systems and the scale of sym-
bols used in them. The abugida/syllabic systems are
referred to as having medium complexity in this paper.

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0
0.0 1.5 3.0

fr
eq

u
en

cy
 (

lo
g

ar
it

h
m

ic
)

rank (logarithmic)

English

(Latin letters)

Japanese

(Kana + Kanji)

Lao

Thai
Myanmar

Khmer

Figure 1: Character distribution on Latin letters in En-
glish, the kana and kanji in Japanese, and the four
abugida systems of Myanmar, Khmer, Thai, and Lao.

schemes. In particular, this project supports ob-
scure ancient fonts and dialect-based input meth-
ods. Regarding the medium complexity scripts of
interest in this study, the configuration of RIME is
excessively complex.

Ding et al. (2019) proposed an input method
for the Myanmar script that can be formulated by
a complex automaton. Rather than key-character
mapping, the basic idea is the conversion of strings
so that operations such as looped alternation, sub-
stitution for combined glyphs, and normalization
for ambiguities and redundancies in the Unicode
can be modeled in a uniform framework. However,
this method is only applicable to the specific writ-
ing system and the overall automaton is hard-coded.
Essentially, AKKHARA is a generalized extension
of this previous approach.

Prediction based on words, phrases, or even sen-
tences supported by large-scale data is a common
function provided by many Chinese and Japanese
input methods. Ding et al. (2018) investigated an
auto-complete method for several abugida systems
that can achieve high accuracy, even with limited
training data. This is a direction for the future de-
velopment of AKKHARA because it provides a more
extensible platform than a key-character mapper.

http://www.gov.cn/gzdt/att/att/site1/20130819/tygfhzb.pdf
http://www.gov.cn/gzdt/att/att/site1/20130819/tygfhzb.pdf
https://www.bunka.go.jp/kokugo_nihongo/sisaku/joho/joho/kijun/naikaku/pdf/joyokanjihyo_20101130.pdf
https://www.bunka.go.jp/kokugo_nihongo/sisaku/joho/joho/kijun/naikaku/pdf/joyokanjihyo_20101130.pdf
https://www.bunka.go.jp/kokugo_nihongo/sisaku/joho/joho/kijun/naikaku/pdf/joyokanjihyo_20101130.pdf
https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
https://keyman.com/
https://github.com/rime

4 Overview of AKKHARA

AKKHARA can be installed and used as a common
input method editor under Win. It supports multi-
ple input methods, which can be selected from a
list. Figure 2 shows the launch screen of AKKHARA,
while Fig. 3 shows an image of the typed and con-
verted strings. For a selected input method, the
details can be customized and viewed in the inter-
face shown in Fig. 4.

In the background, an input method is organized
in a text file named *.akkhara, where * is the
listed name of the input method. Each line of the
file is organized in the following format.

input ||| output ||| priority ||| status (1)

Here, input and output are Unicode strings be-
fore and after a rewriting operation. The priority
is generally a non-negative integer, and rules with
smaller values are always applied before rules with
larger values. The priority can also take a value
of −1 for final normalization after all other oper-
ations have been conducted. The status takes a
value of 0, 1, or −1. Values of 1 and −1 are flags
for the rules that have been enabled and disabled
by the customization, and 0 denotes the basic key-
character mappings that are always applied. There-
fore, the customization label (left of Fig. 4)
lists all the non-zero flagged rules with their status,
and the application label (right of Fig. 4) lists
all the non-negative flagged rules that are used.

r g

_ 3C 02
3C 1B
1B 4D

As a generalization of
the hard-coded automaton
in Ding et al. (2019), a set
of rules in the abovemen-
tioned format actually de-
fines the state transitions in an automaton by the
input and output fields.8 The table here provides
an example of the state-transition from parts of
Figs. 8 and 9 in the appendix of Ding et al. (2019).
Thus, this table can be described by the follow-
ing rules: r ||| 3C , g ||| 02 , 3C r ||| 1B , and
1B g ||| 4D . The following section provides a brief
overview of rule edition.

5 Rule Edition

5.1 General Issues
An akkhara file can be created and edited by a
general text editor such as Notepad under Win.

8Strictly, priorities are unnecessary if the rules are de-
liberately edited. As described later, priorities can group
rules that are useful for edition.

Figure 2: Interface to launch AKKHARA. Four scripts
are listed: Khmer, Laos, Myanmar (selected), and Thai.

Figure 3: Input interface. Pressing the Space bar will
input the lower converted Myanmar script. Pressing the
Enter key will input the upper original string.

Figure 4: Interface showing details of the selected in-
put method. The left screen shows a customization
in which specific rules are enabled/disabled, while the
right screen lists all of the enabled rules.

For the input and output files in a rule, ASCII
characters9 can be directly used; other characters
should be represented by hexadecimal Unicode.
The rules should be integrated on the basis of in-
creasing values of priority from 0, ending with
those that have a priority of −1. A reboot is
required to reload an akkhara file after modified.

In the following subsections, typical rule pat-
terns are described. The examples are taken from
Ding et al. (2019). The status of the rules is
omitted as this depends on user preference.

5.2 Simple Mapping

For basic key–character mappings, simple rules can
be described in the following form.

k ||| 1000 ||| 0 ||| (2)

h ||| 103E ||| 0 ||| (3)

K ||| 1001 ||| 0 ||| (4)

9AKKHARA use the US keyboard layout under Win by
default. The ASCII characters mean those letters and marks
can be input by direct keystrokes on such a keyboard.

One-to-many mappings can also be assigned.

x ||| 1004 103A ||| 0 ||| (5)

For these basic mappings that directly use ASCII
characters, the priority is set to 0, as no other
prior rules will be applied.

5.3 Simple Conversion

Given Rules (2) – (4), adding Rule (6) allows the
input of the character 1001 by two keystrokes, k
and h, as well as by the uppercase K.

1000 103E ||| 1001 ||| 1 ||| (6)

This type of rule is suitable for some characters
with stable digraph Latin transcriptions, such as the
use of the letter h for aspiration in many languages.
In cases where a digraph may cause ambiguities or
users may intentionally disable the conversion, the
following rules can be added as a solution.

q ||| 200B ||| 0 ||| (7)

200B 103E ||| 103E ||| − 1 ||| (8)

Here, q is set as an invisible separator by Rule (7)
and the zero width space 200B is deleted by
Rule (8) as a final normalization with a priority
of −1. The keystrokes k q h then forcibly input
the sequence 1000 103E.10 Section 5.7 discusses
further details about the normalization processing.

5.4 Conversion by Multiple Keystrokes

In many abugida systems, symbols have dependent
and independent forms. For example, the 103E

given by Rule (3) is a dependent form — the cor-
responding independent form is 101F. By adding
the following rules, a double stroke of h will input
the independent form as well as an uppercase H.

H ||| 101F ||| 0 ||| (9)

103E 103E ||| 101F ||| 1 ||| (10)

This is similar to the case of Sec. 5.3, but the
conversion is implemented by tapping an identical
key. This is suitable for symbols with identical
Latin transcriptions in which one of them is over-
whelmingly used in the orthography.

10The sequence 1000 103E violates the common orthog-
raphy of Myanmar, which states that it should not appear in
normal texts. It is only mentioned here as an example.

Combined with the case of Sec. 5.3, a key for
conversion can be used multiple times to input ob-
scure symbols, as shown by the following rules.

n ||| 1014 ||| 0 ||| (11)

g ||| 1002 ||| 0 ||| (12)

1014 1002 ||| 1004 ||| 1 ||| (13)

1004 1002 ||| 100F ||| 1 ||| (14)

100F 1002 ||| 104C ||| 1 ||| (15)

From Rules (11) – (15), a keystroke of n inputs
1014, and then multiple keystrokes of g succes-
sively convert 1004, 100F, and 104C. Note that the
priority values of Rules (13) – (15) can be all
set to 1. Because the rewrite is implemented after
each keystroke, there is no need to distinguish the
order of these rules. When one of them is applied,
the previous rewrite has already been completed.

Similar to Rule (8), Rules (16) and (7) prevent
a keystroke of q from being converted if the very
character 1002 input by g is expected.

200B 1002 ||| 1002 ||| − 1 ||| (16)

5.5 Looped Conversion
This kind of conversion is applied to groups of
diacritic symbols. Here, the characters 102D and
102E in Myanmar script are taken as examples.
The two diacritic symbols are generally Romanized
as i, but with different tones.

i ||| 102D ||| 0 ||| (17)

I ||| 102E ||| 0 ||| (18)

102D 102D ||| 102E ||| 1 ||| (19)

102E 102D ||| 102D ||| 1 ||| (20)

Rules (17) – (20) input the two symbols by
keystrokes of i, where 102D is input by an odd
number of times and 102E is input by an even num-
ber of times. As a shortcut, 102E can also be input
by an uppercase I.

5.6 Normalization of Variants
Context-dependent variants of specific symbols are
used in some writing systems.11 The following
rules provide a relatively complex example.

p ||| 1015 ||| 1 ||| (21)

v ||| 102C ||| 1 ||| (22)

1015 102C ||| 1015 102B ||| 2 ||| (23)

1015 1039 1015 102B |||
1015 1039 1015 102C ||| 3 |||

(24)

11Such as the abandoned Latin letter long s.

The characters 102B (tall aa) and 102C (aa) are
variants of one diacritic mark. Typically, 102C is
used by default, while the tall variant 102B is easier
to read in specific combinations. Rule (23) alter-
nates the tall variant after the character 1015 input
by p. However, in the geminated case whereby two
1015 inputs are stacked by the operator character
1039, the default variant will be used, which is real-
ized by Rule (24). Consequently, the priority of
Rule (24) must be greater than that of Rule (23).12

In orthographies that preserve historical features,
certain obscure variants may only appear in a few
specific words, and these can be organized in the
rules. As in Rules (23) and (24), specific conver-
sions requiring longer contexts should have a larger
priority value than those general ones requiring
less contextual information.

5.7 Normalization of Encoding

Rules (8) and (16) have been introduced in previous
subsections to avoid potential ambiguities. More
generally, rules with a priority of −1 are de-
signed for some non-intuitive combinations/orders
in the encoding system (i.e., Unicode here). Unlike
Sec. 5.6, the normalization in this subsection may
be unnoticed by users.

A crucial case is to use the Backspace key
for deletion during inputting. Because the ap-
pending and converting operations are uniform
in AKKHARA, a keystroke of Backspace actu-
ally cancels the previous rule application, regard-
less of the specific operation. Figures 5 (a) and
5 (b) provide examples on the deletion of append-
ing and converting operations, respectively. As
an example of this kind of normalization, the or-
der of Myanmar characters 103A and 1037 is not
strictly determined. They are usually normalized
into 1037 103A by an increasing order of the code,
although intuitively, 103A is considered to be part
of the preceding character. By Rule (5) and the
following Rule (25), the input can be realized as
in Fig. 5 (c), which is in accord with our intuition.
Rule (26) performs the final normalization when
escaping the input mode.

J ||| 1037 ||| 0 ||| (25)

103A 1037 ||| 1037 103A ||| − 1 ||| (26)

12For clarity, the priority of Rule (23) is set to 2 here to
emphasize that it will be conducted after all common rewrites.

(a) (b) (c)

Figure 5: (a) Using k and K to input 1000 and 1001,
with a Backspace keystroke deleting the character
1001. (b) Using k and kh to input two characters and
the Backspace keystroke to cancel the conversion
caused by h. (c) During the input process, 1037 (the
lower circle) and 103A (the upper arc) are not normal-
ized, so that a Backspace keystroke deletes the 1037.

6 Example

In this section, we provide an example of an
akkhara file that realizes the function described
by Ding et al. (2019). For a clear presentation,
the rules are organized in Tables 2, 3, 4, 5, and
6, according to their priority of 0, 1, 2, 3, and
−1, respectively. By organizing all the rules in the
format of Rule (1) and placing them sequentially
line-by-line in an akkhara file, the input method
is defined and facilitated by AKKHARA.

Table 2 includes the basic mapping described in
Sec. 5.2 for two punctuation marks, 10 digits,13

and the 26 lower/uppercase Latin letters. The three
letters a, o, and x have a one-to-many mapping.

Table 3 includes further conversions. The ta-
ble is divided into three blocks from top to bot-
tom and from left to right. The first block con-
tains simple conversions (mainly by 103E and
1002, and also by 103B and 103C), as described in
Sec. 5.3; the second block contains five conversions
implemented by double keystrokes, as described
in Sec. 5.4; the third group contains looped con-
versions for five pairs (102D/102E, 102F/1030,
1031/1032, 1038/1037, and 103A/1039), as de-
scribed in Sec. 5.5. Tables 2 and 3 cover the scheme
proposed in Fig. 4 of Ding et al. (2019).

Tables 4 and 5 are related to normalization for
variants of 102C/102B. Character sequences re-
quiring alternation are listed. This issue was not
explicitly mentioned by Ding et al. (2019); in this
paper, it has been discussed in Sec. 5.6.

Table 6 contains the final normalization rules.
The upper two rules related to 200B have been
mentioned in Sec. 5.3 in terms of cleaning up the
invisible separator to avoid ambiguities. The lower
three rules are related to the Unicode scheme for
generating the recommended encoding manner.

13They were not included in Ding et al. (2019).

in. out. in. out. in. out.
, 104A j 1038 F 1039
. 104B k 1000 G 1003
0 1040 l 101C H 101F
1 1041 m 1019 I 102E
2 1042 n 1014 J 1037
3 1043 p 1015 K 1001
4 1044 q 200B L 1020
5 1045 r 103C M 1036
6 1046 s 101E N 100A
7 1047 t 1010 O 1029
8 1048 u 102F P 1016
9 1049 v 102C Q 1002

w 103D R 100B
b 1017 y 103B S 1026
c 1005 z 1007 T 1011
d 1012 U 1030
e 1031 A 104F V 1021
f 103A B 1018 W 101D
g 1002 C 1006 X 1004
h 103E D 1013 Y 101A
i 102D E 1032 Z 1008

in. out.
a 1031 102C
o 102D 102F
x 1004 103A

Table 2: 64 rules of in. ||| out. ||| 0 ||| 0 .

In this example, an input method for 75 Unicode
characters14 are defined by 133 rules. More rules
can be added to accommodate users’ preferences.
Generally, the number of rules can be two or three
times the number of symbols. In practice, a scale
of 102 – 103 rules is suggested for an akkhara
file to ensure easy edition and maintenance.

7 Conclusion and Future Work

This paper has described the AKKHARA, a general
input method editor that can accommodate writing
systems of medium complexity. AKKHARA is more
powerful than a key-character mapper, but is sim-
pler than input methods for Chinese and Japanese.
Therefore, AKKHARA is easy to maintain and suit-
able for realizing customized input methods.

Future developments include: 1) developing
AKKHARA for other OSs besides Win, 2) improv-
ing the interface of rule edition, and 3) integrating
corpora for prediction functions.

14From 1000 to 104F, without 1022, 1028, 1033, 1034,
and 1035.

in. out. in. out.
1000 103E 1001 102D 1002 1023
1002 103E 1003 102E 1002 1024
1005 103E 1006 102F 1002 1025
1007 103E 1008 1030 1002 1026
1010 103E 1011 1031 1002 1027
1012 103E 1013 1014 103B 100A
1015 103E 1016 101E 103C 1029
1017 103E 1018
1004 1002 100F 102C 102C 1021
100A 1002 1009 103B 103B 101A
100F 1002 104C 103C 103C 101B
1010 1002 100B 103D 103D 101D
1011 1002 100C 103E 103E 101F
1012 1002 100D
1013 1002 100E 102D 102D 102E
1014 1002 1004 102E 102D 102D
1019 1002 1036 102F 102F 1030
101B 1002 104D 1030 102F 102F
101C 1002 1020 1031 1031 1032
101E 1002 103F 1032 1031 1031
1020 1002 104E 1038 1038 1037
1027 1002 104F 1037 1038 1038
1029 1002 102A 103A 103A 1039
102C 1002 102B 1039 103A 103A

Table 3: 46 rules of in. ||| out. ||| 1 ||| 0 .

*
1001 1001 1031 1002 1002 1031
1004 1004 1031 1012 1012 1031
1015 1015 1031 101D 101D 1031

1002 103D 1002 103D 1031
1012 103D 1012 103D 1031

Table 4: 16 rules of ∗ 102C ||| ∗ 102B ||| 2 ||| 1 .

*
1015 1039 1015 1015 1039 1015 1031

Table 5: Two rules of ∗ 102B ||| ∗ 102C ||| 3 ||| 1 .

in. out. in. out.
200B 103E 103E 200B 1002 1002

in. out.
1025 102E 1026

1029 1031 102C 103A 102A
103A 1037 1037 103A

Table 6: Five rules of in. ||| out. ||| − 1 ||| 0 .

References
Chenchen Ding, Masao Utiyama, and Eiichiro Sumita.

2018. Simplified abugidas. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 491–495, Melbourne, Australia. Association
for Computational Linguistics.

Chenchen Ding, Masao Utiyama, and Eiichiro Sumita.
2019. MY-AKKHARA: A Romanization-based
Burmese (Myanmar) input method. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP): System Demonstrations,
pages 157–162, Hong Kong, China. Association for
Computational Linguistics.

Ian Maddieson. 2013a. Consonant inventories. In
Matthew S. Dryer and Martin Haspelmath, editors,
The World Atlas of Language Structures Online.
Max Planck Institute for Evolutionary Anthropol-
ogy, Leipzig.

Ian Maddieson. 2013b. Vowel quality inventories.
In Matthew S. Dryer and Martin Haspelmath, ed-
itors, The World Atlas of Language Structures On-
line. Max Planck Institute for Evolutionary Anthro-
pology, Leipzig.

Hammam Riza, Michael Purwoadi, Teduh Uliniansyah,
Aw Ai Ti, Sharifah Mahani Aljunied, Luong Chi
Mai, Vu Tat Thang, Nguyen Phuong Thai, Rapid
Sun, Vichet Chea, Khin Mar Soe, Khin Thandar
Nwet, Masao Utiyama, and Chenchen Ding. 2016.
Introduction of the asian language treebank. In Proc.
of O-COCOSDA, pages 1–6.

https://doi.org/10.18653/v1/P18-2078
https://doi.org/10.18653/v1/D19-3027
https://doi.org/10.18653/v1/D19-3027
https://wals.info/chapter/1
https://wals.info/chapter/2

