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UDify (Kondratyuk and Straka 2019) is a multilingual, multi-task parser fine-tuned

on mBERT that achieves remarkable performance on high-resource languages. How-

ever, on some low-resource languages, its performance saturates early and decreases

gradually as training proceeds. To address this issue, this study applies a data aug-

mentation method to improve parsing performance. We conducted experiments on five

few-shot and three zero-shot languages to test the effectiveness of this approach. The

unlabeled attachment scores were improved on the zero-shot language dependency

parsing tasks, with the average score increasing from 55.6% to 59.0%. Meanwhile, de-

pendency parsing tasks in high-resource languages and other Universal Dependencies

tasks were almost unaffected. The experimental results demonstrate that the data

augmentation method is effective for low-resource languages in multilingual depen-

dency parsing. Furthermore, our experiments confirm that continuously increasing

the quantity of synthetic data enhances UDify’s performance. This improvement was

particularly effective for zero-shot target languages.

Key Words: Dependency Parsing, Multilingual Processing, Low-Resource Languages, Data

Augmentation, Unsupervised Learning

1 Introduction

Dependency parsers are tools used in computational linguistics to analyze the grammatical

structure of sentences. They identify the relationships between words and highlight the depen-

dencies that define grammatical meaning. Such insights are crucial for understanding syntactic

roles and relationships within sentences and are essential for various language processing tasks.

Efficiently training dependency parsers requires large treebanks (Dozat and Manning 2017; Qi

et al. 2020; Straka and Straková 2020), which are structured datasets that annotate grammatical

dependencies between words for specific languages. However, for low-resource languages that
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have no (zero-shot) or limited (few-shot) data available in treebanks, the challenge of training

effective dependency parsers becomes significant. Multilingual modeling has emerged as an effi-

cient solution in these cases, leveraging cross-lingual information to compensate for the lack of

data on specific languages. Studies have demonstrated that performance on multilingual tasks

can be boosted by pairing languages with similarities (Scholivet et al. 2019; Üstün et al. 2022).

Furthermore, multilingualism also reduces the expense of training multiple models for a group of

languages (Johnson et al. 2017; Aharoni et al. 2019; Muennighoff et al. 2023).

UDify (Kondratyuk and Straka 2019) exemplifies the effectiveness of this multilingual mod-

eling approach. A multi-task model fine-tuned on multilingual BERT embeddings (Devlin et al.

2019), UDify has been trained using Universal Dependencies (UD) v2.3 (Zeman et al. 2018),

which enables it to generate annotations for any treebank included in v2.3. It exhibits strong

and consistent performance across all 124 UD treebanks for 75 languages, efficiently handling

tasks such as part-of-speech (POS) tagging, lemmatization and dependency parsing. Despite its

robust performance, an overlooked issue is the early saturation problem of the model in zero-shot

languages, particularly evident in dependency parsing tasks, as illustrated in Figure 1, which

shows the training process unlabeled attachment score (UAS) for example high-resource, few-

shot, and zero-shot languages. In this figure, high-resource and few-shot languages demonstrate

stable growth, while zero-shot languages show a gradual decline. This causes substantial discrep-

ancies in the performance of methods such as UDify in zero-shot language scenarios, even when

using almost identical training strategies, datasets, models, and evaluation methods, as reported

in Üstün et al. (2020), Choudhary (2021), Üstün et al. (2022), Effland and Collins (2023).

While data augmentation methods have proven effective for high-resource languages (El-Kurdi

Figure 1 UAS performance trends during training for the English-GUM (high-resource), Upper

Sorbian-UFAL (few-shot), and Breton-KEB (zero-shot) treebanks.
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et al. 2020), they typically rely on existing annotated data and are thus not applicable to zero-shot

languages, which lack such resources. To address the early saturation of dependency parsing in

zero-shot languages, we propose a novel data augmentation strategy tailored specifically for these

languages. Our approach begins by employing the trained UDify model to parse raw sentences

from zero-shot languages, obtaining initial probabilities for dependency arcs. We then apply

unsupervised learning techniques to refine these probabilities without the need for annotated

data. The refined probabilities are then used to generate synthetic structured dependency data

for the zero-shot languages. By integrating this synthetic data into UDify’s training set, we

expand the dataset’s diversity and size, thereby enhancing UDify’s performance and stability on

zero-shot languages.

In this work, we conducted comprehensive experiments on low-resource languages using data

augmentation methods, expanding (for few-shot languages) and creating (for zero-shot languages)

synthetic treebanks for five few-shot and three zero-shot languages. By combining these synthetic

treebanks with the UD treebanks and using the UDify framework, we trained a multilingual

parser. As a result, increases in the UAS for zero-shot languages in the UD v2.13 were observed,

with the average value increasing from 55.6% to 59.0%. In the best case, the UAS increased

substantially from 52.7% to 61.0%. Similarly, few-shot languages experienced a UAS increase of

0.2%. By contrast, the UAS results for other languages and evaluation scores for other tasks did

not show significant negative changes, suggesting that the overall robustness of the multilingual

and multi-task processing was retained.

The remainder of this paper is organized as follows. In Section 2, we first introduce UD, UDify,

and unsupervised dependency learning algorithms as the background of this study. Section 3

describes the performance of UDify on low-resource language scenarios, particularly on zero-shot

languages, as well as a data augmentation method based on UDify and unsupervised learning

algorithms. The experimental results of the case study are provided in Section 4. In addition,

we discussed the impact of synthetic data quantity on the model and the enhancements made to

single language data synthesis in Section 5. Section 6 concludes the paper and outlines future

directions for this research.

2 Background

2.1 Universal Dependencies

Universal Dependencies (UD) are initiatives aimed at creating consistently annotated tree-

banks for numerous languages. Contributors from around the world have supplied treebanks for
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hundreds of languages, thereby enhancing global linguistic analysis and comparison globally.

Some languages in the UD are represented by multiple treebanks. These treebanks are named

using a structured format that combines the language name with an identifier for the data source

or the creators. For example, the name English-GUM (Zeldes 2017) consists of English denoting

the language and GUM indicating the Georgetown University Multilayer corpus project.1 This

systematic naming method ensures clarity and facilitates easy identification and comparison

across different languages and sources.

We classify languages into high-resource and low-resource groups based on the available quan-

tity of annotated data in the UD treebanks. High-resource languages have extensive annotated

data, providing robust resources for linguistic analysis and computational tasks. Low-resource

languages are further refined by Yang et al. (2022) into two groups: few-shot languages, which

have only a small amount of training data from the UD treebanks, and zero-shot languages,

which lack any training data and exist only in test datasets. This categorization facilitates a

more systematic examination of UDify’s performance across different linguistic resources, thereby

providing crucial insights that guide our research.

Each treebank in the UD encompasses a rich array of grammatical annotations that character-

ize the linguistic features of sentences (Nivre et al. 2007). These include POS, which categorizes

words according to their grammatical roles, lemmas that provide the base forms of words, mor-

phological features describing inflectional properties, and dependency structures that map out the

relationships between words. Figure 2 illustrates the directional arcs with relationships between

words, with a key focus on the arcs in this study. UAS is a key evaluation metric to measure the

accuracy of these arcs.

Figure 2 Visualization of “Otto Jespersen was born in Randers in Jutland.” with POS tags, depen-

dency arcs and relations from the English-GUM test set, using UD Annotatrix (Tyers et al.

2018).

1 gucorpling.org/gum/index.html
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Figure 3 UDify model structure, which has a task-specific layer that processes word tokens and delivers

UD annotations for each token, using the example from Figure 2. This figure is a redrawn

adaptation based on illustrations from Kondratyuk and Straka (2019).

2.2 UDify

UDify is composed of a pre-trained mBERT model, which is a self-attention network with

12 transformer encoder layers (Vaswani et al. 2017), and a multi-task network for processing

POS tags, lemmas, morphological features, and dependency structures, as illustrated in Figure

3. Unlike traditional models that require training specifically for each language, UDify uses

mBERT’s subword tokenization mechanism to jointly train across all UD treebanks. Note that

for words tokenized into multiple subword units, only the first subword unit is input into the

neural network designed for specific tasks.

The main focus of this study is dependency parsing, for which UDify uses a graph-based bi-

affine attention classifier (Dozat and Manning 2017). This classifier processes embeddings through

specific neural layers, generating probability distributions that are crucial for accurate dependency

parsing. The resulting dependency structures are decoded using the Chu–Liu/Edmonds algorithm

(Chu 1965; Edmonds 1967). To optimize its use with mBERT for multilingual tasks, UDify is fine-

tuned using an adapted version of the ULMFiT strategy (Howard and Ruder 2018), specifically

modified for seamless integration with mBERT parameters.

Integrating these robust strategies enables UDify to excel in UD tasks across a variety of

languages. Its effectiveness is especially notable in contexts involving dependency parsing for low-

resource languages, where it delivers a reliable performance despite the limited data availability.

2.3 Unsupervised Dependency Learning

Using the properties of dependency syntax (Robinson 1970), a general unsupervised algo-

rithm for projective N-gram dependency learning (Unsupervised-Dep) was described in Ding

and Yamamoto (2013, 2014). This method constructs the optimal dependency arcs using a

dynamic programming method with a CKY table based on the concepts of complete-link and
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complete-sequence non-constituents. However, considering the time complexity of this approach

for arbitrary N-gram dependency learning, which may not be ideal for practical applications, we

chose to focus on the bi-gram case in this study.

In the case of bi-grams, the directionality of a complete-link is determined by the outermost

dependency direction, where (wi → wj) indicates a rightward link and (wi ← wj) indicates a

leftward link. The basic complete-link is an adjacent word dependency link.

A complete-sequence represents a null or sequential set of adjacent complete-links with identi-

cal directionality. It begins as a null sequence of complete-links based on a single word, its smallest

constituent. The direction of a complete-sequence matches that of its component complete-links.

Unsupervised learning first constructs complete-links and complete-sequences for a substring,

then incrementally merges the complete-links into larger complete-sequences and complete-

sequences into larger complete-links. The recursion can be defined as follows:

Linkr(i, j) ≡ {(wi → wj), Seqr(i, k), Seql(k + 1, j)}

Linkl(i, j) ≡ {(wi ← wj), Seqr(i, k), Seql(k + 1, j)}

Seqr(i, j) ≡ {Seqr(i, k), Linkr(k, j)}

Seql(i, j) ≡ {Linkl(i, k), Seql(k, j)}

In these equations, Link and Seq denote a complete-link and complete-sequence, respectively,

while r and l indicate the direction (right or left). Furthermore, i and j represent the starting and

ending indices of a word sequence in the sentence. This establishes the structural framework of the

Unsupervised-Dep for complete-links and complete-sequences. The subsequent step applies the

Inside–Outside algorithm (Lari and Young 1990; Lee and Choi 1997) to quantitatively determine

the probabilities associated with each link and sequence. We divide the computational process

of the Inside–Outside algorithm into three parts: Inside, Outside, and Probability Updates.

The details of this process are provided in Appendix A.

During the computation of Unsupervised-Dep across the entire corpus, the initial random

probabilities P (wi → wj) and P (wi ← wj) are continuously trained and refined. Ultimately, this

process results in the refined probabilities P
′
(wi → wj) and P

′
(wi ← wj). The Viterbi algorithm

(Forney 1973) determines the most probable tree structure within the inside portion of the input

sentence sent(1, n), generating the following optimal dependency arcs:

DEParc = V iterbi(CKYInside(sent(1, n), P
′
(wi → wj), P

′
(wi ← wj))) (1)
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Here, CKYInside represents the results in the CKY table obtained from the inside portion of

the calculations. Using the above method, it is possible to learn from the corpus of a specific

language and generate a dependency treebank containing only dependency arcs without human

intervention.

3 Proposed Method

3.1 Motivation

To ensure a comprehensive analysis, we initially used the UD v2.3 based on the original

UDify training setup. However, recognizing the outdated nature of the UD v2.3, and ensuring

the relevance and applicability of our findings, we incorporated the latest UD v2.13 treebanks

into our study. This dual-dataset approach is crucial to rigorously evaluating the consistency

of the early saturation phenomenon across different versions, affirming that our conclusions are

robust and widely applicable.

Despite the original recommendation of 80 training epochs for UDify, our reproduction studies

across both treebanks reveal that achieving results comparable to those reported in the litera-

ture typically required extending the training to approximately 200 epochs.2 This extension is

crucial not only for verifying the robustness of the early saturation effect but also for observing

performance changes in few- and zero-shot languages as defined in Section 2.1. These changes

are further analyzed in the subsequent sections.

Few-Shot Languages UDify demonstrates robust performance even on few-shot languages

not included in the mBERT training set. For example, the Upper Sorbian language, which is

absent from mBERT’s training corpora, is notably under-resourced, with only 23 sentences in its

Upper_Sorbian-UFAL treebank training set. Despite these limitations, UDify achieves impressive

parsing accuracy in Upper Sorbian. The training process shows a consistent increase in parsing

accuracy on the test set, as depicted in Figure 4.

Zero-Shot Languages For UD v2.3, the treebanks of 13 languages used for training UDify

lack both training and development datasets. In contrast, for UD v2.13, there are 65 zero-shot

languages. Notably, three of these languages—Breton, Tagalog, and Yoruba—are included in

mBERT’s training data. These languages have zero-shot treebanks in both UD v2.3 and v2.13,

and UDify learns their dependency structures through transfer learning. Unlike high-resource

and few-shot languages, the dependency parsing accuracy for zero-shot languages tends to decline

2 lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3042
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Figure 4 UAS performance trends during training for several few-shot languages: (left) results on UD

v2.3, (right) results on UD v2.13.

Figure 5 UAS performance trends during training for zero-shot languages: (left) results for UD v2.3,

(right) results for UD v2.13. Note that Tagalog-Ugnayan appears only in UD v2.13.

after the initial few epochs of training. The optimal performance for any version of the treebank

is typically observed around the 8th epoch, as depicted in Figure 5.

While the literature does not explicitly report a decrease in accuracy for zero-shot languages

with extended training, our detailed analysis of results from multiple studies (Üstün et al. 2020;

Choudhary 2021; Langedijk et al. 2022; Üstün et al. 2022) suggests such a trend. Given these

disparities in training outcomes, where high-resource and few-shot languages show gradual im-

provements in contrast to the significant drops experienced by zero-shot languages, there is a

pressing need for tailored strategies.

To address this issue, we have developed a data augmentation technique using Unsupervised-

Dep specifically designed for multilingual parsers. This method is particularly crucial for zero-

shot languages, as it extends their learning curve and stabilizes performance within multilingual
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parsers. Additionally, our decision to include few-shot languages is motivated by the potential

of data augmentation to enhance performance on specific tasks for languages with limited data

resources (Ding et al. 2020).

This strategy involves enriching the training dataset with refined dependency structures gen-

erated through Unsupervised-Dep. The approach is designed not only to mitigate the early

saturation problem in zero-shot languages but also to enhance performance consistency across

both few- and zero-shot languages. By improving the stability and effectiveness of UDify’s depen-

dency parsing capabilities, this technique addresses the immediate challenges and broadens the

applicability and impact of our method. Furthermore, it has the potential to lead to significant

improvements in dependency parsing accuracy for both few- and zero-shot languages.

3.2 UDify with Unsupervised Augmentation

When applying the Unsupervised-Dep method to augment the data of UD treebanks, it is

crucial to ensure that the generated data conform to the UD format. This approach, which

we refer to as “Unsupervised Augmentation,” requires not only generating dependency arcs but

also producing other types of data. These additional data types must then be integrated with

the results from Unsupervised-Dep. We divide the Unsupervised Augmentation into two main

components, training and generation, and provide a detailed explanation of each.

Training Unsupervised-Dep has a high time complexity of O(n3), which makes the common

practice in the original methods that start training from a random probability somewhat ineffi-

cient. To circumvent this, we leverage the parsing results from UDify to initialize the probabilities.

Despite the potential decrease in UDify’s accuracy on zero-shot languages during its training, the

final results consistently outperform those from other parsing models (Qi et al. 2018; Zeman et al.

2018; Tran and Bisazza 2019), providing a robust foundation for our initialization approach.

Our approach commences by feeding the raw corpus for a specific language lang, denoted

as Dlang
train, into trained-UDify and generating dependency arcs represented by DEP lang

arc . Sub-

sequently, statistical computations are performed specifically on the DEP lang
arc elements. The

results, P (wi → wj)
lang and P (wi ← wj)

lang, serve as the initial probabilities for Unsupervised-

Dep. Note that although the UDify parsing results include other types of information, such as

POS, lemma, and dependecy relations (denoted as other), these are disregarded in the parsing

results of Dlang
train because they do not participate in our subsequent computations, as depicted in

Figure 6.

The input for Unsupervised-Dep consists of Dlang
train and the initial probabilities P (wi →

wj)
lang and P (wi ← wj)

lang. After undergoing a set number of iterations, we obtain the
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Figure 6 Integration of the parsing results from UDify with the training outcomes from Unsupervised-

Dep for new UDify model training. The UDify model is a simplified diagram of that shown

in Figure 3.

Algorithm 1 Unsupervised-Dep in multilingual corpora

1: for each lang ∈ raw corpora do

2: Input: Dlang
train = sent1, ..., sentn, P (wi → wj)

lang, P (wi ← wj)
lang

3: Output: P
′
(wi → wj)

lang, P
′
(wi ← wj)

lang

4: for each sent ∈ Dlang
train do

5: for i = 1 to length(s) do

6: for j = 1 to length(s) do

7: αLink
r (i, j), αLink

l (i, j) = Inside(i, j, P (wi → wj)
lang, P (wi ← wj)

lang)

8: for i = 1 to length(s) do

9: for j = 1 to length(s) do

10: βLink
r (i, j), βLink

l (i, j) = Outside(i, j, P (wi → wj)
lang, P (wi ← wj)

lang)

11: for i = 1 to length(s) do

12: for j = 1 to length(s) do

13: P
′
(wi → wj)

lang = Probabilities Update(αLink
r (i, j)βLink

r (i, j))

14: P
′
(wi ← wj)

lang = Probabilities Update(αLink
l (i, j)βAlnk

l (i, j))

re-estimated probabilities P
′
(wi → wj)

lang and P
′
(wi ← wj)

lang. This process adheres to the

principles of the expectation–maximization algorithm, as Algorithm 1 confirms.

Generation To construct optimal dependency arcs for a sentence sent(1, n) from Dlang
gen in the

raw corpora, we utilize the re-estimated probabilities P
′
(wi → wj)

lang and P
′
(wi ← wj)

lang.

The V iterbi algorithm is employed to traverse the internal calculation results, as outlined in Eq.

(1).

Following this, we use trained-UDify to parse Dlang
gen . The parsing results, termed DEP lang

arc

and other
′
, are meticulously preserved. These data are illustrated in Figure 6 and play a crucial

role in constructing the new UD format data, denoted as UD
′
.
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Subsequently, UD
′
, which incorporates synthetic data for zero-shot languages, is integrated

with the existing UD treebanks. This integration is specifically designed to train a new instance

of UDify optimized for these languages. Notably, when a dependency arc exists between a word

and the root, the relationship of this arc must be modified to “root.” Dependency relationships

between other words as parsed by trained-UDify remain unchanged. This selective adjustment

ensures compliance with the “single root principle” of the dependency structure, which dictates

that every sentence must have exactly one root, as cited in (Robinson 1970). Modifying the

dependency relationship to root for arcs that connect to the “root” reinforces this principle,

maintaining the structural integrity necessary for clear syntactic analysis.

The Unsupervised Augmentation approach not only generates synthetic data for zero-shot

languages but also transitions them from relying solely on transfer learning to a blend of su-

pervised and transfer learning. Consequently, this significantly enhances the performance of the

multilingual model in zero-shot languages.

4 Experiments

4.1 Dataset

In this experiment, the data were divided into two categories: treebank data for training UDify

and raw data for Unsupervised Augmentation. To validate the effectiveness of our method, we

conducted experiments using both UD v2.3 and v2.13 treebanks. The two versions are compared

in Table 1. Notably, UD v2.13 includes significantly more data than UD v2.3, which is the original

version of the UD treebank used by UDify. Specifically, v2.13 has added 72 languages, of which

51 are zero-shot languages, further emphasizing the necessity of this study.

UD v2.3 UD v2.13

Sentence

Train 745,860 1,414,197

Dev 96,683 178,562

Test 136,128 260,507

Tokens 18,001,694 30,817,267

Words 18,362,118 31,448,898

Language 76 (14) 148 (65)

Treebank 129 (35) 259 (107)

Table 1 Comparison of different versions of treebanks, where the numbers in parentheses indicate the

number of languages/treebanks for which only test data are provided.
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For the low-resource languages used in Unsupervised Augmentation, we selected eight lan-

guages that can be primarily tokenized using spaces, and we have detailed the analysis of their

similarity to other high-resource languages in Appendix B. While our methodology is applicable

to non-space-tokenized languages, we prioritized languages that facilitate a focused analysis on

dependency structures without the complexities of tokenization, and are present in both versions

of the UD treebanks. These include five few-shot languages and three zero-shot languages. We

exhaustively collected data for these languages from publicly available corpora (Tiedemann 2012;

El-Kishky et al. 2020; Reimers and Gurevych 2020; Schwenk et al. 2021), and divided the raw

data for each language into parts Dtrain and Dgen. We set Dgen to 1,000, a decision that sets

the stage for exploration of synthetic data quantity across multiple low-resource languages and

its impact on UAS in subsequent experiments. The details and statistics of the collected data

are organized and presented in Table 2 and referred to as “OPUS-mult” in subsequent sections.

Language #Dlang
train #Dlang

gen Treebank #train #test Code

Hungarian 134.1 1,000 Hungarian-Szeged 910 449 hu

Kazakh 1.7 1,000 Kazakh-KTB 31 1,047 kk

Lithuanian 236.7 1,000
Lithuanian-ALKSNIS+ 2,341 684 lt-a

Lithuanian-HSE 153 55 lt-h

Marathi 1.5 1,000 Marathi-UFAL 373 47 mr

Tamil 13.7 1,000
Tamil-MWTT+ 0 534 ta-m

Tamil-TTB 400 120 ta-t

Breton 18.2 1,000 Breton-KEB∗ — 884 br

Tagalog 150.0 1,000
Tagalog-TRG∗ — 128 tl-t

Tagalog-Ugnayan+ — 94 tl-u

Yoruba 9.7 1,000 Yoruba-YTB∗ — 318 yo

Table 2 Raw data collected from various corpora and the treebanks of the collected languages in UD

v2.13. The top five languages are few-shot languages and the bottom three languages are

the zero-shot languages. #Dlang
train indicates the number of raw sentences (in thousands) used

for training in Unsupervised Augmentation, and #Dlang
gen indicates the raw sentences used for

generating in Unsupervised Augmentation. #train and #test are the number of sentences

in the training and test sets, respectively. The code represents the abbreviated name of the

treebank, facilitating the display of the experimental results in subsequent sections. Treebanks

marked with an “*” indicate that they exist in both versions, but those in UD v2.13 have with

changes including but not limited to the number of test sets and error corrections. Treebanks

marked with a “+” indicates that they are exclusive to UD v2.13.
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4.2 Setup

To minimize the impact of potential experimental environment changes, as discussed in Popel

and Bojar (2018), we adhered to the parameter settings outlined in Kondratyuk and Straka

(2019) and reimplemented the model as UDify(our) across different versions of the treebanks.

Additionally, to expedite the experimental process, we employed Horovod (Sergeev and Balso

2018) to modify UDify and AllenNLP (Gardner et al. 2018) for multi-GPU parallel training.3

During the training of the Unsupervised Augmentation, we used the UDify(our) model to parse

each language present in the OPUS-mult dataset. The statistical results derived from the parsing

outcomes of each language were adopted as their initial probabilities, which were continuously

re-estimated throughout the unsupervised learning process. After the 10th training iteration, we

used the newly estimated probabilities to parse sentences from the OPUS-mult dataset, generating

data that align with the UD format.

To explore the impact of expanding and creating training data for low-resource languages on

parsing accuracy, we conducted methodological experiments. In these experiments, we randomly

selected 300 sentences for each language from Dgen in OPUS-mult, processed them through the

generation part of Unsupervised Augmentation, and integrated them into the UD treebanks to

form the “Unsup” training dataset. Inspired by the work of Triguero et al. (2015), Rybak and

Wróblewska (2018), we conducted an experiment using a comparative method called “Self.” In

this approach, we used the same raw sentences as Unsup and applied the parsing results from

the UDify(org) model. These results were merged with the original training set to train the Self

model.

During training, following McDonald et al. (2011), we merged training sets, randomized the

sentence order in each epoch, and fed the network diverse batches of original and synthetic data

from multiple languages. Additionally, we controlled the amount of data in each epoch to ensure

that each experiment used the same quantity of training data.

4.3 Result

A comparison with the experimental results reported in Kondratyuk and Straka (2019) con-

firms that UDify(our) was successfully reimplemented, as shown in Table 3. Although no single

method yielded significant improvements for few-shot languages, the results for zero-shot lan-

guages, analyzed using bootstrap resampling (Efron 1992), demonstrate a consistent and sig-

nificant enhancement in UDify’s dependency arc accuracy through the Unsup strategy during

3 When replicated across 16 V100s in parallel, replicating UDify takes close to 9 days on UD v2.3 and close to

18 days on UD v2.13.
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Code
v2.3 v2.13

UDify(org) UDify(our) Self Unsup UDify(our) Self Unsup

Few-shot

hu 89.7 89.8 89.7 89.6 90.4 90.6 90.5

kk 74.8 76.3 76.0 76.3 75.8 75.1 75.9

lt-a — — — — 82.8 83.2 83.1

lt-h 79.1 79.1 79.1 78.9 81.2 79.7 80.9

mr 79.4 73.1 74.8 74.3 72.7 73.5 73.8†

ta-m — — — — 83.0 83.3 83.4

ta-t 79.3 80.2 80.6 80.0 78.2 78.3 78.1

Zero-shot

br 63.5 69.7 69.1 73.4‡ 66.3 66.0 70.0‡

tl-t 64.0 79.5 75.7 87.3‡ 75.3 80.1 82.6‡

tl-u — — — — 52.7 53.7 61.0‡

yo 37.6 39.4 40.2 41.3 41.3 41.2 43.1†

Few — 82.6 82.4 82.5 82.6 82.7 82.8

Zero — 63.8 63.3 67.2‡ 55.6 55.6 59.0‡

Table 3 UAS (%) for few- and zero-shot languages obtained using different methods on UD v2.3 and

v2.13. The last two rows display the combined test set results for few- (Few) and for zero-shot

(Zero) languages. We denote the treebank names using the codes from Table 1. The UDify(org)

result for the v2.3 was reported in Kondratyuk and Straka (2019). The best result in each

group is highlighted in bold. Additionally, we conducted significance tests on the experimental

results, comparing UDify(our) with Unsup, where “‡” indicates a significance level of p ≤ 0.01

and “†” indicates p ≤ 0.05, both showing where Unsup outperforms UDify(our).

training on different versions of the treebanks. This is reflected in the combined test set results,

where the UAS for UD v2.3 increases from 63.8% to 67.2% and the UAS for UD v2.13 increases

from 55.6% to 59.0%. Since our study primarily focuses on the parsing accuracy of dependency

arcs (measured by UAS), and given that the LAS has also shown improvement, we have included

the LAS results in Appendix C.

To the best of our knowledge, this is the state-of-the-art result for Tagalog (Aquino and

de Leon 2020; Choudhary 2021). In UD v2.13, the UAS for treebanks Tagalog-TRG and Tagalog-

Ugnayan showed remarkable increases from 75.3% and 52.7% to 82.6% and 61.0%. Using Breton

from the zero-shot languages in UD v2.3 and v2.13 as an example, we illustrate the changes in

UAS during the training process under different methods in Figure 7. The figure reveals that

incorporating data generated through Unsupervised Augmentation significantly mitigates the

decline in UAS accuracy during the training of zero-shot languages, thereby improving outcomes.

In the experimental results for UD v2.13, the performance of Unsup was better than that of

UDify(our), but it still remains significantly lower than the accuracy at the start of training.
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Figure 7 UAS performance trends during training are shown for the Breton-KEB test set, comparing

two baselines, UDify(our) and Self, with the proposed method, Unsup. (Left) Results for UD

v2.3, (right) results for UD v2.13.

Given that UDify is a multilingual dependency parser, it is essential to assess the impact of

our proposed method on other languages. To further investigate the differences in UAS results

between UDify(org) and Unsup, we tested all treebanks in UD v2.3 and v2.13. As shown in Figure

8, the results indicate that using Unsupervised Augmentation to create synthetic data effectively

enhances the UAS for zero-shot languages, particularly for Breton and Tagalog. However, consid-

ering that UD v2.13 contains a larger proportion of zero-shot treebanks (approximately 41.3%),

the Unsup method shows unstable results on these treebanks. This includes instances in which

the UAS significantly increased for certain languages without data augmentation. Despite these

fluctuations, the method’s negative impact on the parsing precision of dependency structures in

other languages remains minimal.

For a comprehensive comparison, the UD scores of the zero-shot and other languages have

been compiled in Table 4.4 Although our primary research objective was to improve the parsing

accuracy of dependency arcs, we have also enhanced UDify’s performance in other tasks for low-

resource languages. UDify must balance the loss produced by multiple decoders during training,

and as noted in the work of Rybak and Wróblewska (2018), these variations in evaluation metrics

are considered reasonable. Broadly, our method does not negatively impact other languages or

tasks, maintaining their performance levels.

Considering the current results, we believe that using Unsupervised Augmentation to synthe-

size training data for zero-shot languages is necessary and effective in a multilingual modeling

4 Except for UD Chukchi-HSE, the format of this treebank is not supported by the script used to calculate the

UD scores.
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Figure 8 Difference in UAS (%) across the test treebanks UD v2.3 (top) and UD v2.13 (bottom). The

gray bars above the X-axis indicate Unsup > UDify(our), and those below the X-axis indicate

Unsup < UDify(our) (left Y-axis). The black line (right Y-axis) shows treebank training set

sizes. Zero-shot languages are to the left of the black dashed line. Note that because Tamil

is represented by both treebanks Tamil-MWTT (ta-m) and Tamil-TTB (ta-t), we classify ta-m

as few-shot.

v2.3 v2.13

Zero-shot Other Zero-shot Other

UAS Rest UAS Rest UAS Rest UAS Rest

UDify(our) 63.8 55.0 77.5 82.4 55.6 56.0 80.1 83.6

Self 63.3 58.7 77.6 82.5 55.6 56.4 80.1 83.5

Unsup 67.2 61.4 77.6 82.5 59.0 59.3 80.2 83.6

Table 4 UD scores on selected zero-shot and other languages obtained by different methods. Rest(%)

refers to the average scores of UPOS, UFeats, Lemmas, and LAS in the UD scores. The best

result in each group is in highlighted in bold.

context. In the following sections, we focus on UD v2.13 to discuss how the number of zero-shot

languages synthesized by Unsupervised Augmentation impacts the UAS and its performance

when applied to a single language exclusively.
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5 Discussion

5.1 Quantity of Synthetic Data in Multiple Low-Resource Languages

To further investigate the effectiveness of Unsupervised Augmentation, we conducted experi-

ments on the impact of generating different quantities of synthetic data for low-resource languages

on UAS. These experiments were carried out using UD v2.13. Maintaining the same experimental

setup and parameters as in the previous chapter, we set a fixed amount of data for the input

per epoch. To ensure the same number of model updates in each epoch and to avoid variations

in the final UAS values due to update frequencies differences, we randomly discarded some data

during each epoch. We set the number of synthetic data points to 100, 300, 500, and 1,000,

representing sentences randomly selected from Dgen, producing a total of 800, 2,400, 4,000, and

8,000 synthetic data points for each of the eight languages listed in Table 2, named Unsup100,

Unsup300, Unsup500, and Unsup1000. The results of the experiments are presented in Table 5,

and the specific changes in UAS for zero-shot languages during the training process are illustrated

in Figures 9 and 10.

The experimental results and observed changes in UAS during the training process reveal

that increasing the synthetic data quantity enhances both the stability during training and the

final outcomes. Additionally, increasing synthetic data quantity can mitigate or suppress the

downward trends observed during training. Specifically for Tagalog-TRG and Tagalog-Ugnayan,

setting the synthetic data quantity to 1k significantly suppresses this downward trend. Although

a decrease is still observed in Breton-KEB and Yoruba-YTB, the final results are superior to those

obtained with smaller amounts of synthetic data. Moreover, for Breton-KEB, increasing the syn-

thetic data quantity to 500 resulted in final UAS values that surpass those at the start of training.

The performance metrics for selected zero-shot languages and other data not using Unsupervised

Augmentation in UD tasks are shown in Table 6, with no significant impact observed on other

languages or tasks.

Few-shot Zero-shot
Few Zero

hu kk lt-a lt-h mr ta-m ta-t br tl-t tl-u yo

Unsup100 90.4 75.6 82.9 80.8 73.8 83.7 79.1 66.8 83.0 57.4 43.1 82.7 58.2

Unsup300 90.5 75.9 83.1 80.8 73.8 83.4 78.1 70.0 82.6 61.0 43.1 82.8 59.0

Unsup500 90.3 75.6 83.0 82.1 74.3 83.0 78.6 70.7 84.3 61.0 44.8 82.7 60.1

Unsup1000 90.4 76.0 82.9 81.4 73.1 82.2 78.9 71.7 86.4 62.9 44.7 82.7 60.7

Table 5 UAS for few- and zero-shot languages obtained using different quantities of synthetic data.

The best result in each group is in highlighted in bold.
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Figure 9 UAS performance trends during training: (left) results for Breton-KEB, (right) results for

Yoruba-YTB.

Figure 10 UAS performance trends during training: (left) results for Tagalog-TRG, (right) results for

Tagalog-Ugnayan.

5.2 Quantity of Synthetic Data in a Single Low-Resource Language

When data augmentation is simultaneously performed on multilingual language models, it

may lead to unexpected effects on other languages (Wang et al. 2020). Considering the benefits

of targeted data augmentation in a multilingual environment (Choi et al. 2024), we conducted

experiments focusing on data augmentation for a single language treebank. This experiment

evaluated the specific improvements in model performance attributable to augmenting the data

for one language at a time.
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Zero-shot Other

UAS Rest UAS Rest

Unsup100 58.2 58.3 80.1 83.5

Unsup300 59.0 59.3 80.1 83.6

Unsup500 60.1 60.1 80.1 83.6

Unsup1000 60.7 61.0 80.1 83.6

Table 6 UD scores on selected zero-shot and other languages obtained by different methods. Rest(%)

indicates the average score of UPOS, UFeats, Lemma, and LAS in the UD scores. The best

result in each group is in highlighted in bold.

Zero-shot Other

UAS Rest UAS Rest

br100 68.3 56.4 80.0 83.5

br300 69.6 58.3 80.1 83.5

br500 70.5 58.9 80.1 83.6

br1000 72.1 60.3 80.1 83.5

Table 7 UD scores on Breton-KEB obtained by different amounts of synthetic data . Rest(%) indicates

the average score of UPOS, UFeats, Lemma, and LAS in the UD scores. The best result in

each group is in highlighted in bold.

Because Breton-KEB is the largest treebank of zero-shot language in our experiments, it

allows for a more effective evaluation of Unsupervised Augmentation’s performance on a single

language. Therefore, we selected Breton as our target for Unsupervised Augmentation. Regarding

the synthetic data quantity, we maintained the same parameters as in other experiments: 100,

300, 500, and 1,000, labeled as br100, br300, br500, and br1000, respectively. The results of these

experiments are presented in Table 7, and the specific changes in UAS during the training process

for the Breton-KEB are illustrated in Figure 11.

For a visual comparison, we plotted the changes during the training process using the best-

performing parameters in Figure 11. The graph shows that, in a multilingual model scenario,

whether synthetic data are produced for multiple languages simultaneously or only for a single

language, the results are similar and do not exhibit significant changes, such as suppressing the

decreasing UAS trend.
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Figure 11 (Left) UAS performance trends during training for the Breton-KEB test set. (Right) When

the synthetic data quantity is set to 1000, the changes in UAS during the training process

for the Breton-KEB test set are observed, both when using Unsupervised Augmentation on

multiple languages simultaneously and when applying it to a single language only.

6 Conclusion and Future Work

This study focuses on the phenomenon by which the dependency-parsing accuracy of UD-

ify in low-resource language scenarios declines during the training process. We observed that

maintaining the number of training epochs was essential to preserve the overall performance of

the multilingual parser, as its accuracy on the entire test set continued to improve gradually

with extended training. Recognizing the need to separately optimize the parsing capabilities of

zero-shot languages within a multilingual parser, we propose a data augmentation method based

on unsupervised learning, specifically tailored to enhance the final performance in zero-shot lan-

guages. The effectiveness of our approach in zero-shot languages was confirmed by multilingual

experimental results, demonstrating significant improvements in dependency parsing accuracy

without adversely affecting UDify’s performance on other languages and tasks. Furthermore,

we examined the impact of synthetic data quantity and the use of synthetic data for individual

zero-shot languages. The experimental results indicate that increasing the quantity of synthetic

data can effectively improve the UAS during training with UDify. However, using synthetic data

exclusively for a single language does not significantly enhance its accuracy at the end of training.

In terms of future work, our research objectives include: 1) further investigating the potential

positive correlation between the volume of unsupervised generated data included in the training

set and the improvement in UDify’s performance on low-resource languages and 2) exploring

additional factors and considerations that may enhance UDify’s performance in low-resource

language scenarios.
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Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., and Yuret, D. (2007).

“The CoNLL 2007 Shared Task on Dependency Parsing.” In Eisner, J. (Ed.), Proceedings

242



Mao et al. Data Augmentation for Low-Resource Languages in Multilingual Dependency Parsing

of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning (EMNLP-CoNLL), pp. 915–932, Prague, Czech

Republic. Association for Computational Linguistics.

Popel, M. and Bojar, O. (2018). “Training Tips for the Transformer Model.” The Prague Bulletin

of Mathematical Linguistics, 110, pp. 43–70.

Qi, P., Dozat, T., Zhang, Y., and Manning, C. D. (2018). “Universal Dependency Parsing from

Scratch.” In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw

Text to Universal Dependencies, pp. 160–170, Brussels, Belgium. Association for Computa-

tional Linguistics.

Qi, P., Zhang, Y., Zhang, Y., Bolton, J., and Manning, C. D. (2020). “Stanza: A Python Natural

Language Processing Toolkit for Many Human Languages.” In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics: System Demonstrations,

pp. 101–108, Online. Association for Computational Linguistics.

Reimers, N. and Gurevych, I. (2020). “Making Monolingual Sentence Embeddings Multilingual

using Knowledge Distillation.” In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing. Association for Computational Linguistics.

Robinson, J. J. (1970). “Dependency Structures and Transformational Rules.” Language, 46 (2),

pp. 259–285.
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Appendix

A Inside–Outside Algorithm

The algorithm begins by calculating the inside probabilities from bottom to top and left to

right across the CKY table, and then it computes the outside probabilities from top to bottom

and right to left, utilizing the previously calculated inside probabilities.

Inside The inside probability of a complete-link reflects the likelihood of generating a word

sequence wi,j when there is a dependency relation between wi and wj as follows:

αLink
r (i, j) =

∑j−1
m=i p(wi → wj)α

Seq
r (i,m)αSeq

r (m + 1, j)

αLink
l (i, j) =

∑j−1
m=i p(wi ← wj)α

Seq
r (i,m)αSeq

l (m + 1, j)

(2)

The inside probability for a complete-sequence represents the likelihood that the word sequence

wi,j originates from either Seql(i, j) or Seqr(i, j) as follows:

αSeq
r (i, j) =

∑j−1
m=i α

Seq
r (i,m)αLink

r (m, j)

αSeq
l (i, j) =

∑j
m=i+1 α

Link
l (i,m)αSeq

l (m, j)

(3)

Outside The following probabilities measure the generation of word sequences w1,i−1 and

wj+1,n as words from i to j form a complete-sequence:
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βSeq
r (i, j) =

n∑
h=j+1

βSeq
r (i, h)αLink

r (j, h) (4)

+ βLink
r (i, h)αSeq

l (j + 1, h)p(wi → wh)

+ βLink
l (i, h)αSeq

l (j + 1, h)p(wi ← wh)

βSeq
l (i, j) =

i−1∑
v=1

βSeq
l (v, j)αLink

l (v, i) (5)

+ βLink
r (v, j)αSeq

r (v, i− 1)p(wv → wj)

+ βLink
l (v, j)αSeq

r (v, i− 1)p(wv ← wj)

These probabilities calculate the formation of words preceding i and following j in a sentence

when complete-link(i, j) results in wi,j :

βLink
r (i, j) =

∑i
v=1 β

Seq
r (v, j)αSeq

r (v, i)

βLink
l (i, j) =

∑n
h=j β

Seq
l (i, h)αSeq

l (j, h)

(6)

Probability Updates The iterative construction process for complete-links and complete-

sequences continues until the dependency structure of the entire sentence, denoted as Linkr(1, n),

is built. Here, 1 and n respectively signify the positions of the first and last words, marking the

beginning and end of the sentence. At this point, the dependency probabilities for wi and wj

within the sentence can be determined as follows:

P (wi → wj) =
αLink
r (i, j)βLink

r (i, j)

P (Linkr(1, n))

P (wi ← wj) =
αLink
l (i, j)βAlnk

l (i, j)

P (Linkr(1, n))

(7)

When the calculations for each sentence in a corpus are complete, the resulting dependency

probabilities between word pair (i, j) must be normalized as follows:

P
′
(wi → wj) =

P (wi → wj)∑
k∈vocab P (wi → wk)

P
′
(wi ← wj) =

P (wi ← wj)∑
k∈vocab P (wi ← wk)

(8)

Here, vocab represents the whole vocabulary of the corpus. This ensures that the total sum of all

potential link probabilities from word i to every other word in the vocabulary, whether leftward

or rightward, equals 1.
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B Similarity Analysis of Selected Low- and High-Resource Languages

Due to the inherent similarities in vocabulary, grammar, and phonetics among languages

from the same family, and the enhancement of performance across various tasks through shared

cross-lingual information during multilingual model training (Kong et al. 2021; Üstün et al. 2022;

Chronopoulou et al. 2023), this section will analyze the similarity between the eight low-resource

languages selected in Section 4 and other languages for which training data are available.

To facilitate this analysis, we employ lang2vec (Littell et al. 2017), a powerful tool in natural

language processing that offers standardized vectors. These vectors represent various language

information types, providing detailed identifications for languages drawn from typological and

phylogenetic databases. In our study, we utilize lang2vec to calculate the similarity between

all languages involved in the training, and then visualize these similarities after dimensionality

reduction with t-SNE (van der Maaten and Hinton 2008), as demonstrated in Figure 12. Visual

analysis reveals that each selected low-resource language, which enables potential cross-lingual

learning opportunities for these languages.

Figure 12 Visualize the language vectors for the languages used in UD v2.13 experiments. “■” rep-

resents the selected zero-shot languages, “+” represents the selected few-shot languages,

and “◦” represents other languages involved in the training. Selected low-resource lan-

guages are marked in red with abbreviations following the ISO 639-3. Note that there are

65 languages with training data in UD v2.13, but not every language is represented in the

lang2vec language vectors, so the figure does not include all languages with training data.
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Beyond linguistic features, the extent of similarities in the surface vocabulary between lan-

guages is crucial. UDify uses the mBERT tokenizer to process input sentences, thereby allowing

sentences from various languages to share common tokens. To visually demonstrate the similarity

in token usage among different languages, we use Breton, which employs the Latin alphabet, as

an example. We calculated the token coverage rate between Breton and high-resource language

treebanks by analyzing the proportion of shared tokens in their respective datasets. This method

assessed their similarity, with results displayed in Figure 13.

The figure illustrates that Breton shares considerable similarity with other high-resource

languages, which also use the Latin script. This similarity further supports the potential for

cross-lingual learning. Additionally, the coverage rates of training sets from other high-resource

language treebanks over their respective test sets range from 0.18 to 0.55, with an average of 0.31.

Our constructed dataset DBreton
gen achieves a coverage rate of 0.39 over Breton-KEBtest, effectively

enhancing the parsing accuracy for Breton, as demonstrated in our experimental results.

Figure 13 Bidirectional token coverage rates between train and test sets of different treebanks. Higher

values indicate greater coverage and similarity between the datasets. The coverage is cal-

culated using the formula C(y, x) = |y∩x|
|y| , where |y ∩ x| represents the number of common

tokens, and |y| is the total number of tokens in the reference set.

248



Mao et al. Data Augmentation for Low-Resource Languages in Multilingual Dependency Parsing

C Experimental Results for LAS

We have placed the LAS results in Table 8, and conducted significance tests. In the UD

v2.13 version for the eight languages involved in the experiment, 9 out of 11 treebanks showed

improvement in LAS, with three zero-shot languages achieving significant enhancements.

For the Tagalog-TRG in the UD v2.3, the dataset was quite small, encompassing only 55

sentences. In the UD v2.13, the size of the test set was expanded to 128 sentences, resulting in

significant differences in the improvement of the LAS between the two versions.

Experimental results indicate that Unsupervised Augmentation not only enhances the parsing

accuracy of dependency arcs but also improves the parsing accuracy of dependency relations.

However, because our proposed method focuses on generating dependency arc data through

unsupervised learning, it does not specifically optimize or enhance the data for dependency

relations. Consequently, despite the overall improvement in accuracy, there remains room for

improvement in the fine-grained identification of dependency relation types. Future research

could consider developing more detailed data augmentation techniques, particularly targeted

enhancements for dependency relation types, to further improve the model’s parsing accuracy.

Code
v2.3 v2.13

UDify(org) UDify(our) Self Unsup UDify(our) Self Unsup

Few-shot

hu 84.9 85.3 85.3 85.1 86.0 86.2 86.1

kk 63.7 65.1 64.9 65.2 64.3 63.9 64.5

lt-a — — — — 76.7 77.0 76.9

lt-h 69.3 69.2 68.9 68.3 67.8 66.6 67.5

mr 67.7 62.9 62.4 63.6 60.0 61.7 61.9†

ta-m — — — — 73.2 73.6 73.7

ta-t 71.3 71.4 71.2 70.8 67.3 67.5 67.2

Zero-shot

br 39.8 50.1 50.5 56.4‡ 47.3 47.0 52.6‡

tl-t 40.1 57.2 52.4 72.3‡ 44.3 46.3 53.3‡

tl-u — — — — 32.5 34.0 41.0‡

yo 19.1 22.0 22.0 24.7 23.2 23.5 25.0†

Few — 74.6 74.5 74.5 74.8 74.9 75.0

Zero — 44.5 44.7 50.3‡ 36.5 36.6 40.6‡

Table 8 LAS (%) for few- and zero-shot languages obtained using different methods on UD v2.3 and

v2.13. The UDify(org) result for the v2.3 was reported in Kondratyuk and Straka (2019). In

the table, “‡” indicates a significance level of p ≤ 0.01 and “†” indicates p ≤ 0.05, both marks

show instances where Unsup outperforms UDify(our).
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