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Inputting Writing Systems with Medium Complexity:

A Generalized Input Method Editor AKKHARA

and Case Study on Myanmar Script

Chenchen Ding†, Masao Utiyama† and Eiichiro Sumita†

In this study, an input method editor called AKKHARA is developed to accommodate

writing systems comprising several tens to hundreds of symbols. As an engineering

realization, AKKHARA accepts and applies a set of rewrite rules with priorities such

that the alternation, substitution, and normalization of character strings are applied

alongside the keystrokes. Compared with general key-character editors, AKKHARA pro-

vides a greater flexibility for Romanization-based rule editions. Compared with the

input methods developed for Chinese and Japanese, AKKHARA is lightweight and easy

to maintain. As an application case of AKKHARA, this study illustrates the realization

of a Romanization-based Myanmar input method using the Unicode standard. A ver-

sion of AKKHARA for Microsoft Windows was released that supports Unicode characters

with customizable functions for rewriting rule editions.
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1 Introduction

Various alphabet writing systems have been used to record numerous languages worldwide.

These alphabet systems use tens of distinguishable symbols to transcribe phonemes. Conversely,

languages, such as Chinese and Japanese, apply logogram systems totally or partially in their

orthographies, thus requiring thousands of symbols to represent morphemes.

This study focuses on a group of syllabic systems that lie between the aforementioned ex-

tremes. In this report, they are referred to as having a medium complexity. Compared with

logogram systems, they are still based on phonetics, although a redundancy in spelling may

be retained to distinguish morphemes; compared with an alphabet system, they assign symbols

based on syllables rather than phonemes, and may apply a nonlinear combination to characters.

Traditionally, these syllabic systems are input by direct keystrokes and treated as common

alphabets. Because of the larger symbol set, the keyboard layout is crowded and requires one or
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more alternating keys. However, these systems are not as complex as those used in Chinese or

Japanese scripts, wherein language-dependent input methods are indispensable. Therefore, an

input editor that is 1) lightweight, 2) language-independent, and 3) editable and maintainable,

is expected to efficiently input such writing systems.

Motivated by these requirements, the AKKHARA editor developed in this study provides a

general solution. AKKHARA repeatedly applies rewrite operations to convert keystrokes into specific

character strings. Therefore, compared with a keyboard layout editor, AKKHARA has a greater

ability and flexibility in applying string operations than simply appending new characters using

keystrokes. This is important for writing systems with certain redundancies in their encoding

systems, because some complex combined glyphs can be realized in more than one ways. Thus,

the rewrite operations can normalize the input to generate consistently encoded textual data.

Temporary input methods for Chinese and Japanese scripts are typically based on common

Romanization systems, such as Pinyin and Rōmaji. However, numerous languages that do not

use the Latin alphabet lack a consistent Romanization system. In AKKHARA, a set of rewrite rules

is organized in an editable textual file in a structured format, thereby enabling users to customize

the input method according to their preferences.

Predictions based on words, phrases, or even sentences, supported by large-scale data, are a

common function provided by Chinese and Japanese input methods. Ding et al. (2018) inves-

tigated an auto-complete method for several abugida systems that can achieve a high accuracy,

even with limited training data. This is a direction for the future development of AKKHARA.

AKKHARA primarily provides a layer for the local decisive conversion between raw keystrokes and

writing systems for users to generate correctly coded and normalized strings. Based on this layer,

sophisticated functions, such as context-based prediction can be further developed.

The remainder of this study is organized as follows. Section 2 introduces the linguistic back-

ground of writing systems. Section 3 reviews related works and applications. Section 4 provides

a general overview and instructions for rewriting rule editions to define an input method on arbi-

trary character sets. To illustrate the application of AKKHARA, an input method of the Myanmar

script (Ding et al. 2019) is used as a case study. Section 5 reviews the original design of the Myan-

mar input method and describes AKKHARA’s more extendable realization. Section 6 concludes the

report and presents ideas for future work.

2 Linguistic Background

Table 1 lists the main types of writing systems used worldwide, with a comparison of the
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number of symbols applied. Generally, an analytic phonetic writing system, e.g., a typical alpha-

bet or abjad system, contains approximately 30 (≈ 101.5) symbols. This is because the average

phonetic inventory of natural languages contains 22 ± 3 consonants (Maddieson 2013a) and five

or six vowels (Maddieson 2013b). By contrast, a logogram system may contain thousands of

symbols for daily use. For example, the Table of General Standard Chinese Characters1 contains

8, 105 characters for Chinese, and the List of Jōyō Kanji2 contains 2,136 characters for Japanese.

Figure 1 compares character distributions across different writing systems. Parallel data

from the Asian Language Treebank (Riza et al. 2016)3 were used. The differences between an

Type # Symbol Example

Logogram > 103 Chinese character

Phonogram

– syllabic 101.5–103 Japanese kana

– abugida 101.5–103 Devanagari script

– alphabet ≈ 101.5 Latin script

– abjad ≈ 101.5 Arabic script

Table 1 Types of writing systems and the scale of symbols used in them. This report refers to the

abugida/syllabic systems as having medium complexity.

Fig. 1 Character distribution of Latin letters in English, the kana and kanji in Japanese, and the four

abugida systems of Myanmar, Khmer, Thai, and Lao. Frequency is the normalized relative

frequency, i.e., empirical probability; the rank is by the descending order of the frequency.

1 http://www.gov.cn/gzdt/att/att/site1/20130819/tygfhzb.pdf
2 https://www.bunka.go.jp/kokugo_nihongo/sisaku/joho/joho/kijun/naikaku/pdf/joyokanjihyo_

20101130.pdf
3 https://att-astrec.nict.go.jp/member/mutiyama/ALT/
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alphabet system (English), a mixed syllabic and logogram system (Japanese), and four abugida

systems (Myanmar, Khmer, Thai, and Lao) are presented. Evidently, the four abugida systems

with medium complexity share similar features, but differ from the alphabet/logogram systems.

Generally, these medium complexity systems contain more commonly used symbols and a longer

tail of obscure characters compared with general alphabet systems. However, their complexity is

still far from that of a logogram system.

For scripts supported by the Unicode Basic Multilingual Plane, the following are taken as the

objects of AKKHARA, where the number of points assigned by Unicode is provided in parentheses.

Most scripts are abugidas; herein the dagger symbol indicates that the script is syllabic.

Devanagari (128 ), Bengali (96 ), Gurmukhi (80 ), Gujarati (91 ), Oriya (91), Tamil (72 ), Tel-

ugu (98 ), Kannada (89), Malayalam (118), Sinhala (91 ), Thai (87 ), Lao (82 ), Tibetan (211),

Myanmar (160), Ethiopic (358), Cherokee† (92 ), Unified Canadian Aboriginal Syllabics4 (640),

Khmer (114), Limbu (68), New Tai Lue (83 ), Tai Tham (127), Balinese (121), Sundanese (66 ),

Batak (56 ), Lepcha (74), Vai† (300), Bamum† (88 ), Saurashtra (82 ), Javanese (91 ), Cham (83),

Tai Viet (72 ), and Meetei Mayek (56).

Herein, systems with lesser complexity, such as Tai Le (35 ) were excluded. For brevity, only

the names of the scripts and number of assigned points are listed. One script may be used in

different writing systems,5 wherein only a portion of the symbols is used, or extended symbols

are required.

3 Related Work and Applications

Popular operating systems (OS) such as Microsoft Windows and Macintosh provide keyboard

layouts for various writing systems. Several keyboard layout editors, such as Keyman,6 have been

developed for more sophisticated layout editions. These input editors focus on key-character

mapping with extensions for handling contextually dependent keystrokes.

For writing systems using Chinese characters, the RIME7 input method engine has customiza-

tion functions that allow users to design input schemes. This project supports obscure ancient

fonts and dialect-based input methods. Regarding the medium complexity scripts of interest in

this study, the RIME configuration is excessively complex.

4 Essentially Abugida but encoded as syllabary.
5 For example, the Devanagari is used by the languages of Hindi, Marathi, Sindhi, Nepali, and Sanskrit.
6 https://keyman.com/
7 https://github.com/rime
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Ding et al. (2019) proposed an input method for Myanmar script that can be formulated using

a complex automaton. Rather than key-character mapping, the basic idea concerns converting

strings such that operations, such as looped alternations, substitutions for combined glyphs,

and normalizations for ambiguities and redundancies, in Unicode can be modeled in a uniform

framework. However, this method is applicable only to the particular writing system, and the

overall automaton is hard-coded. AKKHARA follows the basic idea of the specific input method

and extends it to a language-independent input editor.

4 Functions of AKKHARA

4.1 Interface

AKKHARA can be installed and used as a common input editor for Windows.8 It supports multiple

input methods that can be selected from a list. Figure 2 shows the launch screen of AKKHARA, and

Fig. 3 shows an image of typed and converted strings. For a selected input method, the details

can be customized and viewed in the interface, as shown in Fig. 4.

4.2 Format

In the background, an input method is defined using a text file named *.akkhara, where the

symbol * denotes the name of the input method. Each line of the file is organized in the following

format.

Fig. 2 Interface launching AKKHARA. Four scripts are listed: Khmer, Laos, Myanmar (selected), and

Thai.

Fig. 3 Input interface. Pressing the space bar inputs the bottom converted Myanmar script. Pressing

the enter key inputs the top original string.

8 https://att-astrec.nict.go.jp/member/ding/my-akkhara.html
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Fig. 4 Interface showing details of the input method selected. The left screen shows a customization

wherein specific rules are enabled/disabled; the right screen lists all of rules enabled.

input ||| output ||| priority ||| status, (1)

where, input and output are the Unicode strings before and after a rewriting operation, re-

spectively. priority is a non-negative integer, and rules with smaller values are always applied

before rules with larger values. These rules are for local operations and applied ad-hoc after

each keystroke. priority can also take a value of −1 for a global final normalization after all

other operations have been conducted. status is assigned a value of 0, 1, or −1. The values

of 1 and −1 are flags for the rules enabled and disabled by customization, respectively, and 0

denotes rules that are always applied.

The rewriting operations can actually describe a regular language because they always rewrite

one side of a string with the input processing.9 Therefore, AKKHARA can realize any input method

as long as the required conversions can be formulated by a regular language. Note that priority

is unnecessary if the rules are deliberately organized and strictly operated in a predefined order.

priority can help users group rules for editing and maintenance. Rules that do not require

explicit orders can be assigned with identical priority.

An akkhara file can be created and edited by a general text editor, such as Notepad on

9 Rules with a priority of -1 conduct an overall rewriting on a string, which is a more powerful operation than

a regular language. This is provided only to handle certain intrinsic encoding problems in Unicode, which

should not bother users.
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Windows. For the input and output fields in a rule, ASCII characters10 can be used directly;

other characters should be represented using hexadecimal Unicode. The rules should be integrated

by the increasing values of priority from 0, ending with those with a priority of −1. A reboot

is required to reload an akkhara file after modification.

The following subsections provide general descriptions of editing the rules for realizing alter-

nations, substitutions, and normalizations of character strings. The descriptions omit the status

of the rules as this depends on user preference.

4.3 Simple Mapping

For basic key-character mapping, simple rules can be described, as follows.

a1 ||| u1 · · · un ||| 0 |||, (2)

where a1 is an ASCII character available on a general US keyboard; and u1 · · · un is a Unicode

string composed of one or more characters to be input by the keystroke of a1.

For these basic mappings that directly use ASCII characters, priority is generally set to 0,

because no other prior rules are applied.

4.4 Simple Conversion

Rules (3)–(5) provide a typical example for realizing a simple conversion function. Using two

keystrokes, a1 and a2, u3 can be input. Note that the keystrokes of a1 and a2 have their own

input functions and that u3 is generated by a rule with a priority of 1. This guarantees that

Rule (5) executes after Rule (4).

a1 ||| u1 ||| 0 |||, (3)

a2 ||| u2 ||| 0 |||, (4)

u1 u2 ||| u3 ||| 1 |||, (5)

This type of rule is suitable for characters with stable digraph Latin transcriptions, such as

using h for aspiration in many systems. In cases where a digraph may cause ambiguities or where

users may intentionally disable the conversion, the following rules can be added as solutions.

a0 ||| 200B ||| 0 |||, (6)

200B u2 ||| u2 ||| − 1 |||, (7)

10 ASCII characters here are letters and marks that can be directly input by keystrokes on a US keyboard.
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Here, a0 inputs an invisible separator by Rule (6), and the zero-width space of 200B is deleted

by Rule (7) as a final normalization with a priority of−1. Subsequently, a sequence of keystrokes
a1 a0 a2 forcibly inputs the sequence u1 u2.

In practice, the conversion key a2 and separator key a0 can be customized based on the

Romanization preference, frequency of ambiguities, and keystroke distributions.

4.5 Conversion by Multiple Keystrokes

As a natural extension of simple conversion, a conversion key can be used multiple times to

convert characters through a series. Generally, Rules (3)–(5) can be further extended using the

following rules. Using these rules, uk+1 can be converted by one keystroke of a1, followed by k−1

keystrokes of a2.

u3 u2 ||| u4 ||| 1 |||, (8)

· · ·

uk u2 ||| uk+1 ||| 1 |||, (9)

· · ·

Note that the priority values from Rule (8) can be set to 1. As the rewrite is implemented

after each keystroke, the order of these rules does not need to be distinguished. When one is

applied, the previous rewrite has already been completed.

Conversion using multiple keystrokes is suitable for a series of redundant characters for the

same phoneme in a specific writing system, where only one or two of them are frequently used.

Therefore, the inputs of remaining obscure ones can be grouped by the sequential conversion.

4.6 Looped Conversion

As another type of conversion, a single keystroke can be repeated to input a group of characters

in a looped manner. Rules (10)–(12) realize a function in which a series of keystrokes a1, u1 and

u2 can be converted in a looped manner. That is, an odd number of keystroke(s) of a1 can input

u1, and even number for u2.

a1 ||| u1 ||| 0 |||, (10)

u1 u1 ||| u2 ||| 1 |||, (11)

u2 u1 ||| u1 ||| 1 |||, (12)

Similarly, by replacing Rule (12) with the following rules, looping can be extended to an
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arbitrary number of characters.

u2 u1 ||| u3 ||| 1 |||, (13)

· · ·

uk−1 u1 ||| uk ||| 1 |||, (14)

uk u1 ||| u1 ||| 1 |||, (15)

This type of looped conversion can be used for a set of symbols (mostly two or three in practice)

that share identical Romanization by one letter, such that they can be quickly converted using

identical keystrokes.

4.7 Normalization of Variants

In some writing systems, context-dependent variants of specific symbols are used. If u1 and

u′1 are two variants of one character, while encoded separately by Unicode, then the following

rules realize an example of context-dependent conversions.

u2 u1 ||| u2 u′1||| 2 |||, (16)

u3 u2 u′1 ||| u3 u2 u1 ||| 3 |||, (17)

By Rule (16), when u1 comes after u2, it is substituted by u′1. When u1 comes after a string

of u3 u2, it is kept as it is, which is further supported by Rule (17). Note that the priority of

such normalization rules begins from 2 to distinguish them from general input and conversion

operations. The longer the context, the larger the priority assigned. In the most extreme case,

certain obscure variants may appear only in a few specific words. For such rules, a large constant

of priority can be set for convenience.

5 Case Study

5.1 General Issues and a Myanmar Input Method

In general, the following issues are required to design a minimum scheme to input a writing

system with medium complexity.

• The arrangement of some common characters. These characters should be input by simple

keystrokes.

• The arrangement of other characters that require alternation keys. The alternation key is

primarily the shift-key, or a second alternation key is required if characters remain.
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The original work of Ding et al. (2019) focused primarily on these two issues, thus providing

a basic interface for inputting the specific set of characters. Their work extended the use of

alternation key(s) for more efficient conversion operations. The instruction of the input method

can be printed by users on A4 paper (Fig. 5, i.e., Fig. 4 in the original paper). The conventionally

accepted Romanization, frequency of characters, and keystroke distribution on a QWERTY keyboard

are considered in the design for efficiency.

In brief, the Myanmar Language Commission (MLC) Transcription System (Department of

the Myanmar Language Commission 2014) was applied. Because the MLC system is rigid and

academic, it is simplified for input purposes. For example, aspirated consonants are denoted by

a preceding h in the MLC system such as hk or hp, for historical reasons. This is adjusted to

succeeding h, such as kh and ph to input the corresponding letters. Compared with the MLC

system, this design is based on general use of Latin letters to address the conversion function using

h in the aforementioned example. In addition, vowel systems are simplified such that more than

one letters with similar phonetic values are arranged on one key, and obscure letters can be input

using multiple keystrokes of the same key. For other diacritic marks, those frequently used are

arranged in the middle area of the keyboard (e.g., on the f and j keys) for easy keystrokes. More

details about the design, as well as about the keystroke distribution compared with traditional

keyboard layout, can be found in the original paper (Ding et al. 2019).

For further convenience, an input method should consider orthographic and encoding issues

because:

• Some redundant characters are context-dependent. In some cases, they are encoded as

one character by Unicode and the variants are accommodated by font design. In other

cases, they are treated as different characters that require manual selection.

• The combination of some complex glyphs can be realized in more than one manner; the

order of component characters is not strictly defined. Similarly, specific fonts may be

sensitive or insensitive to diversity.

These issues require detailed normalization operations, which require users to have a good

understanding of the encoding and fonts when everything is performed manually. The original

Myanmar input method was formulated using a finite-state automaton (Hopcroft et al. 2013) and

hard-coded to satisfy the minimum input requirements. More sophisticated operations are not

explicitly mentioned as these functions are, although possible, difficult to realize using a vanilla

automaton. Therefore, the original implementation is more illustrative than practical.

The following subsection discusses the realization of the input method using a generalized

AKKHARA with basic extended normalization operations.
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5.2 Realization Using AKKHARA

An akkhara file that realizes the aforementioned input method was released with the AKKHARA

binary files. The Appendix lists rules organized in Tables 2, 3, 4, 5, and 6, according to their

priority of 0, 1, 2, 3, and −1, respectively. The leading number is the line number in the

released file.

Table 2 includes the basic mapping described in Sec. 4.3 for two punctuation marks, 10

digits,11 and 26 lower/uppercase Latin letters. The three letters a, o, and x have a one-to-many

mapping. Table 3 lists further conversions. The table is divided into three blocks from top to

bottom and from left to right. The first block (lines 65–95) contains simple conversions (mainly by

103E and 1002, and by 103B and 103C), as described in Sec. 4.4; the second block (lines 96–105)

contains looped conversions for five pairs (102D/102E, 102F/1030, 1031/1032, 1038/1037, and

103A/1039), as described in Sec. 4.6; and the third block (lines 106–110) contains five conversions

implemented using multiple keystrokes, as described in Sec. 4.5. Tables 2 and 3 cover the scheme

in Fig. 5, which realizes the minimum requirements for basic character conversion.

From Table 4, the normalization functions in Sec. 4.7 are applied. Tables 4 and 5 concern

the normalization of the variants of 102C/102B. Character sequences that require alternation

are listed. Some rules, such as lines 125 and 126, are prepared for obscure cases that require a

context of up to three characters to decide the variants. This is inconveniently to be represented

by an automaton, where the status of the tri-grams should be prepared.

Table 6 lists the final normalization rules. Sec. 4.4 mentions the upper two rules related to

200B in terms of cleaning the invisible separator to avoid ambiguities. The lower three rules are

concern the Unicode scheme for the recommended encoding. An issue related to the final normal-

ization is the use of the backspace key for deletion while inputting. Because the appending and

converting operations are uniform in AKKHARA, a backspace keystroke actually cancels the pre-

vious rule application, regardless of the specific operation. Figure 6 shows examples of canceling

appending and converting operations. To hide such encoding details from users, normalization

substitutions are conducted after all other conversions are performed. This operation exceeds the

capability of an automaton, but is a general rewriting regardless of the previous status.

These 133 rules realize a basic Myanmar input method that can generate well formed Unicode

character sequences. Users can add more customized rules. As mentioned, priority is convenient

to group rules, and more sophisticated context dependent conversions can be assigned a priority

from 4. These black-boxes are the core functions of the input method, and all user-added rules

11 Ding et al. (2019) did not include these.
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Fig. 6 (a) Using k and K to input 1000 and 1001, with a backspace keystroke deleting character

1001. (b) Using k and kh to input the two characters and a backspace keystroke to cancel the

conversion caused by h. (c) During the input process, 1037 (the lower circle, which is input by

an upper case J) and 103A (the upper arc, which is the end of the string input by x) are not

normalized (by line 133 in Table 6) such that a backspace keystroke deletes 1037.

are applied after the basic operations.

6 Conclusion and Future Work

This paper has described the AKKHARA, a general input method editor that can accommodate

writing systems of medium complexity. A realization of a Romanization-based Myanmar input

method is illustrated as an application case for AKKHARA. AKKHARA is more powerful than a key-

character mapper, but simpler than the input methods for Chinese and Japanese. Therefore,

AKKHARA is easy to maintain and suitable for realizing customized input methods.

Future engineering developments include: 1) developing AKKHARA for other OSs in addtion

to Windows, 2) improving the rule editing interface, and 3) integrating corpora for prediction

functions. The input methods of more abugida and syllablic systems will be further investigated

and edited using AKKHARA for efficient input and normalized digitization.
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Appendix

　　　　　　　　　　　　　　　

1 , ||| 104A ||| 0 ||| 0

2 . ||| 104B ||| 0 ||| 0

3 0 ||| 1040 ||| 0 ||| 0

4 1 ||| 1041 ||| 0 ||| 0

5 2 ||| 1042 ||| 0 ||| 0

6 3 ||| 1043 ||| 0 ||| 0

7 4 ||| 1044 ||| 0 ||| 0

8 5 ||| 1045 ||| 0 ||| 0

9 6 ||| 1046 ||| 0 ||| 0

10 7 ||| 1047 ||| 0 ||| 0

11 8 ||| 1048 ||| 0 ||| 0

12 9 ||| 1049 ||| 0 ||| 0

13 A ||| 104F ||| 0 ||| 0

14 B ||| 1018 ||| 0 ||| 0

15 C ||| 1006 ||| 0 ||| 0

16 D ||| 1013 ||| 0 ||| 0

17 E ||| 1032 ||| 0 ||| 0

18 F ||| 1039 ||| 0 ||| 0

19 G ||| 1003 ||| 0 ||| 0

20 H ||| 101F ||| 0 ||| 0

21 I ||| 102E ||| 0 ||| 0

22 J ||| 1037 ||| 0 ||| 0

23 K ||| 1001 ||| 0 ||| 0

24 L ||| 1020 ||| 0 ||| 0

25 M ||| 1036 ||| 0 ||| 0

26 N ||| 100A ||| 0 ||| 0

27 O ||| 1029 ||| 0 ||| 0

28 P ||| 1016 ||| 0 ||| 0

29 Q ||| 1002 ||| 0 ||| 0

30 R ||| 101B ||| 0 ||| 0

31 S ||| 1026 ||| 0 ||| 0

32 T ||| 1011 ||| 0 ||| 0

33 U ||| 1030 ||| 0 ||| 0

34 V ||| 1021 ||| 0 ||| 0

35 W ||| 101D ||| 0 ||| 0

36 X ||| 1004 ||| 0 ||| 0

37 Y ||| 101A ||| 0 ||| 0

38 Z ||| 1008 ||| 0 ||| 0

39 a ||| 1031 102C ||| 0 ||| 0

40 b ||| 1017 ||| 0 ||| 0

41 c ||| 1005 ||| 0 ||| 0

42 d ||| 1012 ||| 0 ||| 0

43 e ||| 1031 ||| 0 ||| 0

44 f ||| 103A ||| 0 ||| 0

45 g ||| 1002 ||| 0 ||| 0

46 h ||| 103E ||| 0 ||| 0

47 i ||| 102D ||| 0 ||| 0

48 j ||| 1038 ||| 0 ||| 0

49 k ||| 1000 ||| 0 ||| 0

50 l ||| 101C ||| 0 ||| 0

51 m ||| 1019 ||| 0 ||| 0

52 n ||| 1014 ||| 0 ||| 0

53 o ||| 102D 102F ||| 0 ||| 0

54 p ||| 1015 ||| 0 ||| 0

55 q ||| 200B ||| 0 ||| 0

56 r ||| 103C ||| 0 ||| 0

57 s ||| 101E ||| 0 ||| 0

58 t ||| 1010 ||| 0 ||| 0

59 u ||| 102F ||| 0 ||| 0

60 v ||| 102C ||| 0 ||| 0

61 w ||| 103D ||| 0 ||| 0

62 x ||| 1004 103A ||| 0 ||| 0

63 y ||| 103B ||| 0 ||| 0

64 z ||| 1007 ||| 0 ||| 0

Table 2 Sixty-four rules with a priority of 0.
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65 1000 103E ||| 1001 ||| 1 ||| 0

66 1002 103E ||| 1003 ||| 1 ||| 0

67 1005 103E ||| 1006 ||| 1 ||| 0

68 1007 103E ||| 1008 ||| 1 ||| 0

69 1010 103E ||| 1011 ||| 1 ||| 0

70 1012 103E ||| 1013 ||| 1 ||| 0

71 1015 103E ||| 1016 ||| 1 ||| 0

72 1017 103E ||| 1018 ||| 1 ||| 0

73 1004 1002 ||| 100F ||| 1 ||| 0

74 100A 1002 ||| 1009 ||| 1 ||| 0

75 100F 1002 ||| 104C ||| 1 ||| 0

76 1010 1002 ||| 100B ||| 1 ||| 0

77 1011 1002 ||| 100C ||| 1 ||| 0

78 1012 1002 ||| 100D ||| 1 ||| 0

79 1013 1002 ||| 100E ||| 1 ||| 0

80 1014 1002 ||| 1004 ||| 1 ||| 0

81 1019 1002 ||| 1036 ||| 1 ||| 0

82 101B 1002 ||| 104D ||| 1 ||| 0

83 101C 1002 ||| 1020 ||| 1 ||| 0

84 101E 1002 ||| 103F ||| 1 ||| 0

85 1020 1002 ||| 104E ||| 1 ||| 0

86 1027 1002 ||| 104F ||| 1 ||| 0

87 1029 1002 ||| 102A ||| 1 ||| 0

88 102C 1002 ||| 102B ||| 1 ||| 0

89 102D 1002 ||| 1023 ||| 1 ||| 0

90 102E 1002 ||| 1024 ||| 1 ||| 0

91 102F 1002 ||| 1025 ||| 1 ||| 0

92 1030 1002 ||| 1026 ||| 1 ||| 0

93 1031 1002 ||| 1027 ||| 1 ||| 0

94 1014 103B ||| 100A ||| 1 ||| 0

95 101E 103C ||| 1029 ||| 1 ||| 0

96 102D 102D ||| 102E ||| 1 ||| 0

97 102E 102D ||| 102D ||| 1 ||| 0

98 102F 102F ||| 1030 ||| 1 ||| 0

99 1030 102F ||| 102F ||| 1 ||| 0

100 1031 1031 ||| 1032 ||| 1 ||| 0

101 1032 1031 ||| 1031 ||| 1 ||| 0

102 1038 1038 ||| 1037 ||| 1 ||| 0

103 1037 1038 ||| 1038 ||| 1 ||| 0

104 103A 103A ||| 1039 ||| 1 ||| 0

105 1039 103A ||| 103A ||| 1 ||| 0

106 102C 102C ||| 1021 ||| 1 ||| 0

107 103B 103B ||| 101A ||| 1 ||| 0

108 103C 103C ||| 101B ||| 1 ||| 0

109 103D 103D ||| 101D ||| 1 ||| 0

110 103E 103E ||| 101F ||| 1 ||| 0

Table 3 Forty-six rules with a priority of 1.

111 1001 102C ||| 1001 102B ||| 2 ||| 1

112 1002 102C ||| 1002 102B ||| 2 ||| 1

113 1004 102C ||| 1004 102B ||| 2 ||| 1

114 1012 102C ||| 1012 102B ||| 2 ||| 1

115 1015 102C ||| 1015 102B ||| 2 ||| 1

116 101D 102C ||| 101D 102B ||| 2 ||| 1

117 1001 1031 102C ||| 1001 1031 102B ||| 2 ||| 1

118 1002 1031 102C ||| 1002 1031 102B ||| 2 ||| 1

119 1004 1031 102C ||| 1004 1031 102B ||| 2 ||| 1

120 1012 1031 102C ||| 1012 1031 102B ||| 2 ||| 1

121 1015 1031 102C ||| 1015 1031 102B ||| 2 ||| 1

122 101D 1031 102C ||| 101D 1031 102B ||| 2 ||| 1

123 1002 103D 102C ||| 1002 103D 102B ||| 2 ||| 1

124 1012 103D 102C ||| 1012 103D 102B ||| 2 ||| 1

125 1002 103D 1031 102C ||| 1002 103D 1031 102B ||| 2 ||| 1

126 1012 103D 1031 102C ||| 1012 103D 1031 102B ||| 2 ||| 1

Table 4 Sixteen rules with a priority of 2.
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127 1015 1039 1015 102B ||| 1015 1039 1015 102C ||| 3 ||| 1

128 1015 1039 1015 1031 102B ||| 1015 1039 1015 1031 102C ||| 3 ||| 1

Table 5 Two rules with a priority of 3.

129 200B 103E ||| 103E ||| -1 ||| 0

130 200B 1002 ||| 1002 ||| -1 ||| 0

131 1025 102E ||| 1026 ||| -1 ||| 0

132 1029 1031 102C 103A ||| 102A ||| -1 ||| 0

133 103A 1037 ||| 1037 103A ||| -1 ||| 0

Table 6 Five rules with a priority of −1.

Chenchen Ding: received an M.E. degree in computer science from the Univer-

sity of Tsukuba, Japan, in 2012, and a Ph.D. degree in engineering from the

University of Tsukuba, Japan, in 2015. He is currently a senior researcher with

the National Institute of Information and Communications Technology, Japan.

His research interests include computational linguistics and natural language

processing.

Masao Utiyama: received a B.S. in Computer Science from the University of

Tsukuba, Japan, in 1992, an M.S. in Computer Science from the University

of Tsukuba, Japan, in 1994, a Ph.D. in Engineering from the University of

Tsukuba, Japan, in 1997. From 1997 to 1999, he was a Research Associate at

Shinshu University, Japan. He has been a member of the National Institute

of Information and Communications Technology, Japan, since 1999, and is

currently an Executive Researcher at NICT.

Eiichiro Sumita: received his Ph.D. in Engineering from Kyoto University in

1999, and a master’s and bachelor’s in Computer Science from the University

of Electro-Communications in 1982 and 1980, respectively. He is now in the

National Institute of Information and Communication Technology (NICT), its

fellow and the associate director-general of Advanced Speech Translation Re-

search and Development Promotion Center (ASTREC). His research interests

cover machine translation and e-learning. He is a co-recipient of the Maejima

Hisoka Prize in 2013, the Commendation for Science and Technology by the

Minister of Education, Culture, Sports, Science and Technology, Prizes for

Science and Technology in 2010, and the AAMT Nagao Award in 2007.

1270



Ding et al. Inputting Writing Systems with Medium Complexity

(Received April 25, 2022)

(Revised July 22, 2022)

(Accepted September 1, 2022)

1271


