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Abstract

Training automatic speech recognition (ASR) systems for East
Asian languages (e.g., Chinese and Japanese) is tough work be-
cause of the characters existing in the writing systems of these
languages. Traditionally, we first need to get the pronunciation
of these characters by morphological analysis. The end-to-end
(E2E) model allows for directly using characters or words as
the modeling unit. However, since different groups of people
(e.g., residents in Chinese mainland, Hong Kong, Taiwan,
and Japan) adopts different writing forms for a character, this
also leads to a large increase in the number of vocabulary,
especially when building ASR systems across languages or
dialects. In this paper, we propose a new E2E ASR modeling
method by decomposing the characters into a set of radicals.
Our experiments demonstrate that it is possible to effectively
reduce the vocabulary size by sharing the basic radicals across
different dialect of Chinese. Moreover, we also demonstrate
this method could also be used to construct a Japanese E2E
ASR system. The system modeled with radicals and kana
achieved similar performance compared to state-of-the-art E2E
system built with word-piece units.
Index Terms: Speech recognition, acoustic model, end-to-end
model, radicals, transformer

1. Introduction
Conventional GMM-HMM [1] and DNN-HMM [2] based auto-
matic speech recognition (ASR) systems require independently
optimized components: acoustic model, lexicon and language
model. The end-to-end (E2E) model integrates these compo-
nents into a single neural network. It simplifies ASR system
construction, solves the sequence labeling problem between
variable-length speech frame inputs and label outputs (phone,
character, syllable, word, etc.) and has achieved promising re-
sults on ASR tasks. Various types of E2E model have been stud-
ied in recent years: connectionist temporal classification (CTC)
[3, 4], attention-based encoder-decoder (Attention) E2E models
[5, 6], E2E lattice-free maximum mutual information (LFMMI)
[7], and E2E models jointly trained with CTC and attention-
based objectives (CTC/Attention) [8, 9, 10, 11]. Recently, the
transformer [12] has been applied to E2E speech recognition
systems [13, 14, 15, 16] and has achieved promising results.

However, building multi-dialect/multi-lingual End-to-End
ASR systems for East Asian languages directly using charac-
ters is still an intricate problem due to a large number of ex-
isting character categories. There are several character sets co-
existing in Chinese, Japanese and Korean languages. And the
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total number of the characters is more than 20,000. As an al-
ternative, most conventional approaches only recognize about
2,000 to 4,000 commonly used characters, and inevitably have
problems of OOV.

In this paper, we propose a novel radical-based representa-
tion for Chinese characters. It is well-known that all Chinese
characters are composed of basic structural components, called
radicals. Thus, these large characters can be decomposed into
a compact set of basic radicals. The manner of treating a Chi-
nese character as a composition of radicals rather than a single
character class largely reduces the size of vocabulary. There-
fore, it is an intuitive way to decompose Chinese characters into
radicals and describe their spatial structures for E2E acoustic
modeling. Compared with traditional character-based methods,
the main contributions of this study are summarized as follows:
We describe how to decomposite Chinese characters based on
detailed analysis of Chinese radicals and structures. The size
of the radical vocabulary is largely reduced compared with the
character vocabulary. We also effectively build multi-dialect
E2E ASR systems for accents of Chinese Mainland, Taiwan,
and Hong Kong. The same method can also be applied to the
Japanese language.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the related work and describes our pro-
posed method. Section 3 provides experimental evaluations
with different tasks. Conclusions and future works are given
in Section 4.

2. Decompositing Chinese Characters
based on Structural Analysis

2.1. Catergory of Characters

As we introduced in Section 1, several character sets are coex-
isting in some East Asian languages:

1. Traditional Chinese characters (“Zhengti” or “Fanti”) are
still used primarily in Taiwan, Macau, Hong Kong, and
many overseas communities. Moreover, they also remain
in use in mainland China for artistic, scholarly and adver-
tising purposes.

2. Simplified Chinese characters (“Jianti”) become the
written form of the Chinese mainland and Singapore.

3. “Kanji”, which remain a key component used alongside
the Japanese syllabic scripts Hiragana and Katakana in
the Japanese writing system.

4. “Hanja”, which are occasionally used in the writing of
Korean.

5. “Chunom”, which were formerly used in Vietnamese.
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Figure 1: The structural analysis of characters.

Figure 2: Three decomposition levels.

The above (1)-(4) are known as CJK characters [17], more
than 20,000 in total. Vietnamese in (5) is sometimes also
included, making the abbreviation CJKV [18], which has an
even larger character size. This makes building character-based
multi-dialect/multi-lingual E2E ASR systems very difficult due
to a large number of existing character categories (more than
20,000), not including recently created characters from the In-
ternet.

2.2. Related Works

In the past few decades, lots of efforts have been made for study-
ing radical-based Chinese character decomposition.

The most in-depth research about this topic is from the input
method area. The Wubi (“five radicals”) input method1 is based
on the structure of characters rather than their pronunciation. In
this input method, each character has a unique representation
with at most four radicals. Some characters can even be writ-
ten with fewer radicals. Unlike with traditional phonetic input
methods, one does not have to spend time selecting the desired
character from a list of homophonic possibilities. There are re-
ports of experienced typists reaching 160 characters per minute
with Wubi.

In the OCR field, [19, 20] introduced methods to first detect
radicals and then to recognize a Chinese character. Recently,
[21] also tried to detect position-dependent radicals using a deep
residual network.

2.3. Radical-based Chinese Character Decomposition

As shown in Figure 1, we summarize twelve basic structures for
characters. They are listed as follows:

• Two “Horizonal” structures

• Two “Vertical” structures

• One “Overlap” structure

• Three “2-directional surrounding” structures

• Three “3-directional surrounding” structures

1http://wubi.free.fr

• One “4-directional surrounding” structure

Following these structures, we can decompose the charac-
ters into particles. We name these particles using a professional
term “Radical”. The decomposition rules are all from the exist-
ing open-source project2. These rules are written according to
Backus-Naur Form (BNF) [22, 23] style as shown in following
equations.

CHAR ::= STRUCTURE RAD RAD [RAD]

RAD ::= STRUCTURE RAD RAD [RAD]

where the CHAR is the character to be decomposed, and the
STRUCTURE represents one of the twelve structural-marks
corresponding elemental structure in Figure 1. Two and one op-
tional RADs follow the structural-mark (STRUCTURE). The
RAD is the decomposed particle which can also be iteratively
decomposed into structural-mark and sub-particles.

We investigate three different levels of complexities for de-
composition as shown in Figure 2.

• Level-1 (L1): We use the most direct way to decom-
pose characters, mostly one structural-mark following
two radicals as shown in Figure 1. If there is no direct
decomposition, we find the decomposition method from
L2, or even L3.

• Level-2 (L2): The decomposition stops until all of the
radicals are the predefined components of characters
(also known as “ideographs”). The total number of the
ideographs is 249, which is a subset from CNS1163 char-
acter set defined by Taiwan Government3. If there is no
decomposition found in this level, we find the decompo-
sition method from L3.

• Level-3 (L3): It is the most aggressive decomposition.
The decomposition stops until all of the radicals are the

2https://github.com/amake/cjk-decomp
3http://www.cns11643.gov.tw
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Table 1: Number of charaters and radicals from different de-
composition levels caculated from corpora in Section 3.2 and
Section 3.3

Simplified Traditional Simplified Kanji
Charsets Chinese Chinese +Traditional Japanese
#Char 2569 2651 3583 2743
↓ ↓ ↓ ↓ ↓

#L1 1072 1276 1474 1000
↓ ↓ ↓ ↓ ↓

#L2 249 242 249 242
↓ ↓ ↓ ↓ ↓

#L3 28 28 28 28

elementary radicals (also known as “strokes”). The total
number of the strokes is 28, which is a simplified set
from CNS1163.

Table 1 shows the number of characters and decomposed
radicals from different levels calculated from the Chinese di-
alectal corpora in Section 3.2 and the Japanese corpus in Sec-
tion 3.3. The basic 28 strokes are shared by both the Chi-
nese (simplified and traditional) and Japanese Kanji. The ba-
sic ideographs are almost the same among these three charsets.
For L1 decomposition, the numbers of radicals are about half of
their corresponding character numbers.

3. Experimental Evaluations
In this section, we evaluate a set of models built with our pro-
posed method.

3.1. Transformer-based E2E ASR systems

The ASR-Transformer maps an input sequence, that is, the log-
Mel filterbank feature, to a sequence of intermediate representa-
tions by the encoder. The decoder generates an output sequence
of symbols (phones, syllables, sub-words, or words) given the
intermediate representations. The biggest difference between
the ASR-Transformer and commonly used E2E models [5, 6]
is that the ASR-Transformer completely relies on attention and
feedforward components [12].

We used the implementation of the Transformer-based
neural machine translation (NMT-Transformer) [12] in ten-
sor2tensor 4 for all our experiments. The training and testing
settings listed in Table 2 were similar to those in [16].

3.2. Chinese Speech Recognition Task

Traditionally, there are many regional dialects for the Chinese
language. John Hopkins Summer Workshop5 had a special re-
port on this topic. This report [24] analyzed the temporal, fre-
quential and prosodic differences of dialects and their influences
to the LVCSR performance.

In this paper, we focus on three major groups of dialects as
shown in Table 3. Together with Beijing dialect (also known as
Mandarin, MA) which uses the simplified character, the others
are Taiwan dialect (TW) and Hong Kong dialect (HK), which
use traditional characters.

We select around two hours from these dialect speech data
as the test set, so the amounts of these dialects are averaged.
The other data are used as the training set. We use the Beijing

4https://github.com/tensorflow/tensor2tensor
5http://old-site.clsp.jhu.edu/ws04/groups/ws04casr

Table 2: Major Experimental Settings

Model structure
Attention-heads 8 Decoder-blocks 6
Hidden-units 512 Residual-drop 0.3
Encoder-blocks 6 Attention-drop 0.0
Training settings
Max-length 5000 GPUs (K40m) 4
Tokens/batch 10000 Warmup-steps 12000
Epochs 30 Steps 300000
Label-smooth 0.1 Optimizer Adam
Testing settings
Ave. chkpoints last 20 Batch-size 100
Length-penalty 0.6 Beam-size 13
Max-length 200 GPUs (K40m) 4

Table 3: Desktop Recording from Three Dialect Areas (Travel-
ing topic)

Dataset Dialect Area Hours
Training Beijing (MA) 34.9

Hong Kong (HK) 39.8
Taiwan (TW) 50.2

Testing Beijing (MA) 0.6
Hong Kong (HK) 0.8
Taiwan (TW) 0.6

dialect data (MA) for fine-tuning our proposed decomposition
method. We empirically select best modeling units and test our
proposed method for simplified Chinese using test set of Bei-
jing dialect (MA). These datasets are clean speech recorded on
desktop environment. They are on travel topic.

We used 120-dim filterbank features (40-dim static +∆
+∆∆), which were mean and variance normalized per speaker,
and four frames were spliced (four left, one current and zero
right). Speed-perturbation [25] was not used to save training
time. To initalize these models, we use a Mandarin transformer-
based model (eight head-attention, six encoder-blocks and six
decoder-blocks with 512 nodes) trained from 178 hours of
speech data selected from AIShell dataset [26] with the CER
of 9.0% on its own evaluation set.

3.2.1. Selecting Reliable Decomposition Strategy

We use the speech data of Beijing dialect for selecting the
most appropriate character decomposition strategy. As we in-
troduced in Section 2, we conduct the proposed decomposition
in three different levels of complexities. Then, we train a set of
radical-based E2E models using the training set of Beijing di-
alect. These E2E models are using the radical-based labels de-
composed from characters from Level-1 (L1) to Level-3 (L3).
For each decomposition level, we train two models with and
without the structure marks introduced in Section 2.3. We will
choose the decomposition method with the best performance
on the test set of the Beijing dialect (MA). Moreover, we also
checked whether the structure marks are necessary.

The results in Table 4 show the Level-1 (L1) decomposition
is most reliable for constructing E2E ASR systems. We reason
that the L1 decomposition is moderate and it preserves the most
substantial information correlated to the character. According
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Table 4: ASR performance (CER%) of radical-based E2E mod-
els with different settings on Development set (Beijing dialect)

Levels L1 L2 L3
(#Radical) (1042) (249) (28)

w/ structure mark 6.1 13.4 not working
w/o structure mark 2.7 6.8 71.9

Table 5: ASR performance (CER%) of acoustic models with dif-
ferent settings on three-dialectal test sets (“c” means character-
based model, “r” means radical(L1)-based model)

Models Dialectal Test Sets
Training Sets #units MA HK TW

MA (c) (#char=) 2569 1.5 33.7 35.5
HK (c) 2651 29.7 0.9 0.4
TW (c) 2651 30.5 0.4 0.9

MA+HK+TW (c) 3583 1.5 0.2 0.1
MA (r) (#L1=) 1072 2.7 15.4 11.6
HK (r) 1276 27.5 4.8 4.7
TW (r) 1276 30.4 4.2 7.1

MA+HK+TW (r) 1474 1.3 0.1 0.03

The results without statistical significance (from two-tailed t-test at sig-
nificant level of p-value < 0.05) are shown in bold fonts.

to the “Modern Chinese General Character List”[27], 57.4% of
the top 3000 most frequently used characters are composed with
“meaning radical”, which indicates the meaning of the char-
acter, and “sound radical”, which indicates the pronunciation.
On the other hand, the L2 and L3 decomposition methods are
over-aggressive, and information related to the character (the
“meaning radical” and “sound radical”) could be lost during the
decomposition process.

The results also show the structure marks are not helpful
and it will significantly increase insertion and deletion rates. It
is possible to remove them because all children in Eastern Asia
are taught writing each character with only one default order
(left-to-right, up-to-down and outside-to-inside). However, it
could generate conflictions (different characters share the same
radical sequence). By assigning the conflicting characters with
hand-designed unique decompositions, CER% of the recogni-
tion can achieve reduction around 2%.

3.2.2. Multi-Dialect Chinese Speech Recognition Task

We evaluate our proposed method on the multi-dialect Chi-
nese speech recognition task. We decompose the three dialec-
tal Chinese datasets on Level-1 (L1). In Table 5, although
single language modeling with this radical units is not so ef-
fective, the number of the decomposed radicals can be re-
duced by a half of the number of characters for each of these
dialects. Using multi-lingual training [14], the radical-based
multi-dialect model (MA+HK+TW (r)) can achieve almost
similar performance as the character-based multi-dialect model
(MA+HK+TW (c)), while the number of modeling units is also
reduced more than half.

3.3. Japanese Speech Recognition Task

As we mentioned in Section 2, characters (Japanese call them
“Kanji”) has deeply embedded in the Japanese writing system

Table 6: ASR performance (CER%) of the ASR-Transformer
models trained with different units

Network #unit CER%
E01 E02 E03 Ave.

char 3178 8.2 5.9 6.6 6.9
word 98245 10.2 8.6 9.7 9.5
WPM 3000 8.4 6.1 6.3 6.9

8000 7.8 6.0 6.1 6.6
radical(L1)+kana 1171 8.0 5.8 6.2 6.7

The results without statistical significance (two-tailed t-test at p-value
< 0.05) are shown in bold fonts.

since ancient times. After the industrial revolution, the words
(usually character-based) about western civilization (technol-
ogy, politics, philosophy, art, and laws) were first created in
Japan and then spread to China. Today, the proportion of a
Japanese article people from both countries can understand is
more than one third. For this reason, we test our proposed
method on the “Corpus of Spontaneous Japanese (CSJ)” [28].
We used approximately 577 hours of lecture recordings as the
training set (CSJ-Train) according to [29, 30, 11, 31]. Three
official evaluation sets (CSJ-Eval01, CSJ-Eval02, and CSJ-
Eval03), each containing ten lecture recordings [31], were used
to evaluate the speech recognition results. Ten lecture record-
ings were selected for development (CSJ-Dev).

We used 72-dim filterbank features (24-dim static +∆
+∆∆). Other settings are the same as the series of models in
Section 3.2. We trained the baseline ASR-Transformer models
using CSJ-Train. For testing, we decoded the speech from test
sets (CSJ-E01/02/03) and evaluated our models using the char-
acter error rate (CER%). Several modeling units were compared
including words, word-piece-model (WPM)[32] and characters
as shown in Table 6. We used the sentence-piece toolkit6 as
the sub-word segmenter. We used separate 3000 and 8000 sub-
word vocabularies. The ASR-Transformer model trained with
1000 radicals together with 171 Kanas had similar best results
compared to the model 8000 word-pieces. This means we dis-
covered a more efficient way for training Japanese E2E model.

4. Conclusions and Future Work
The end-to-end (E2E) model allows directly using characters or
words as the modeling unit. However, since different groups
of people (e.g., residents in Chinese, Hong Kong, Taiwan, and
Japan) adopts different writing forms for a character, this also
leads to a large increase in the number of vocabulary, especially
when building ASR systems across languages or dialects. In
this paper, we propose a new E2E ASR modeling method by
decomposing the characters into a set of radicals. Our exper-
iments demonstrate that it is possible to effectively reduce the
vocabulary size by sharing the basic radicals across different di-
alect of Chinese. Moreover, we also demonstrated this method
could also be used to construct Japanese E2E ASR system. In
the future, we will move further to model the Chinese, Korean
and Japanese languages together.
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